Skip to main content

Chronic Alcohol, Intrinsic Excitability, and Potassium Channels: Neuroadaptations and Drinking Behavior

  • Chapter
  • First Online:
Book cover The Neuropharmacology of Alcohol

Abstract

Neural mechanisms underlying alcohol use disorder remain elusive, and this lack of understanding has slowed the development of efficacious treatment strategies for reducing relapse rates and prolonging abstinence. While synaptic adaptations produced by chronic alcohol exposure have been extensively characterized in a variety of brain regions, changes in intrinsic excitability of critical projection neurons are understudied. Accumulating evidence suggests that prolonged alcohol drinking and alcohol dependence produce plasticity of intrinsic excitability as measured by changes in evoked action potential firing and after-hyperpolarization amplitude. In this chapter, we describe functional changes in cell firing of projection neurons after long-term alcohol exposure that occur across species and in multiple brain regions. Adaptations in calcium-activated (KCa2), voltage-dependent (KV7), and G protein-coupled inwardly rectifying (Kir3 or GIRK) potassium channels that regulate the evoked firing and after-hyperpolarization parallel functional changes in intrinsic excitability induced by chronic alcohol. Moreover, there are strong genetic links between alcohol-related behaviors and genes encoding KCa2, KV7, and GIRK channels, and pharmacologically targeting these channels reduces alcohol consumption and alcohol-related behaviors. Together, these studies demonstrate that chronic alcohol drinking produces adaptations in KCa2, KV7, and GIRK channels leading to impaired regulation of the after-hyperpolarization and aberrant cell firing. Correcting the deficit in the after-hyperpolarization with positive modulators of KCa2 and KV7 channels and altering the GIRK channel binding pocket to block the access of alcohol represent a potentially highly effective pharmacological approach that can restore changes in intrinsic excitability and reduce alcohol consumption in affected individuals.

The original version of this chapter was revised. A correction to this chapter is available at https://doi.org/10.1007/164_2018_192.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 23 January 2019

    In section 8.1 on the 10th line in first paragraph the reference citation Mateos-Aparicio et al. 2014 is incorrect.

References

  • Abbott GW, Goldstein SA (2001) Potassium channel subunits encoded by the KCNE gene family: physiology and pathophysiology of the MinK-related peptides (MiRPs). Mol Interv 1(2):95–107

    CAS  PubMed  Google Scholar 

  • Abrahao KP et al (2017) Ethanol-sensitive pacemaker neurons in the mouse external globus pallidus. Neuropsychopharmacology 42(5):1070–1081

    CAS  PubMed  Google Scholar 

  • Addolorato G et al (2012) Novel therapeutic strategies for alcohol and drug addiction: focus on GABA, ion channels and transcranial magnetic stimulation. Neuropsychopharmacology 37(1):163–177

    CAS  PubMed  Google Scholar 

  • Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+-activated K+ channels: form and function. Annu Rev Physiol 74:245–269

    CAS  PubMed  Google Scholar 

  • Agrawal A et al (2012) The genetics of addiction – a translational perspective. Transl Psychiatry 2:e140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aguado C et al (2008) Cell type-specific subunit composition of G protein-gated potassium channels in the cerebellum. J Neurochem 105(2):497–511

    CAS  PubMed  Google Scholar 

  • Alger BE, Williamson A (1988) A transient calcium-dependent potassium component of the epileptiform burst after-hyperpolarization in rat hippocampus. J Physiol 399:191–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aryal P et al (2009) A discrete alcohol pocket involved in GIRK channel activation. Nat Neurosci 12(8):988–995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmanov AA et al (2002) Voluntary ethanol consumption by mice: genome-wide analysis of quantitative trait loci and their interactions in a C57BL/6ByJ × 129P3/J F2 intercross. Genome Res 12(8):1257–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badanich KA et al (2013) Ethanol reduces neuronal excitability of lateral orbitofrontal cortex neurons via a glycine receptor dependent mechanism. Neuropsychopharmacology 38(7):1176–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes SJ et al (2010) Stable mossy fiber long-term potentiation requires calcium influx at the granule cell soma, protein synthesis, and microtubule-dependent axonal transport. J Neurosci 30(39):12996–13004

    CAS  PubMed  Google Scholar 

  • Bartels C et al (2007) Recovery of hippocampus-related functions in chronic alcoholics during monitored long-term abstinence. Alcohol Alcohol 42(2):92–102

    PubMed  Google Scholar 

  • Beck H, Yaari Y (2008) Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 9(5):357–369

    CAS  PubMed  Google Scholar 

  • Blatz AL, Magleby KL (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323(6090):718–720

    CAS  PubMed  Google Scholar 

  • Bocksteins E (2016) Kv5, Kv6, Kv8, and Kv9 subunits: no simple silent bystanders. J Gen Physiol 147(2):105–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bodhinathan K, Slesinger PA (2013) Molecular mechanism underlying ethanol activation of G-protein-gated inwardly rectifying potassium channels. Proc Natl Acad Sci U S A 110(45):18309–18314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen T et al (2001) Mutation screening of the KCNN3 gene reveals a rare frameshift mutation. Mol Psychiatry 6(3):259–260

    CAS  PubMed  Google Scholar 

  • Brodie MS et al (1999) Pharmacological reduction of small conductance calcium-activated potassium current (SK) potentiates the excitatory effect of ethanol on ventral tegmental area dopamine neurons. J Pharmacol Exp Ther 290(1):325–333

    CAS  PubMed  Google Scholar 

  • Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283(5748):673–676

    CAS  PubMed  Google Scholar 

  • Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156(8):1185–1195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buck KJ et al (2012) Discovering genes involved in alcohol dependence and other alcohol responses: role of animal models. Alcohol Res 34(3):367–374

    PubMed  PubMed Central  Google Scholar 

  • Cannady R et al (2017) Prefrontal cortex KCa2 channels regulate mGlu5-dependent plasticity and extinction of alcohol-seeking behavior. J Neurosci 37(16):4359–4369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y et al (2001) Modulation of recombinant small-conductance Ca(2+)-activated K(+) channels by the muscle relaxant chlorzoxazone and structurally related compounds. J Pharmacol Exp Ther 296(3):683–689

    CAS  PubMed  Google Scholar 

  • Cardno AG et al (1999) CAG repeat length in the hKCa3 gene and symptom dimensions in schizophrenia. Biol Psychiatry 45(12):1592–1596

    CAS  PubMed  Google Scholar 

  • Carr LG et al (2003) Analyses of quantitative trait loci contributing to alcohol preference in HAD1/LAD1 and HAD2/LAD2 rats. Alcohol Clin Exp Res 27(11):1710–1717

    CAS  PubMed  Google Scholar 

  • Carta M, Mameli M, Valenzuela CF (2004) Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J Neurosci 24(15):3746–3751

    CAS  PubMed  Google Scholar 

  • Cavaliere S, Gillespie JM, Hodge JJ (2012) KCNQ channels show conserved ethanol block and function in ethanol behaviour. PLoS One 7(11):e50279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavaliere S, Malik BR, Hodge JJ (2013) KCNQ channels regulate age-related memory impairment. PLoS One 8(4):e62445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandy KG et al (1998) Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder? Mol Psychiatry 3(1):32–37

    CAS  PubMed  Google Scholar 

  • Chen S, Benninger F, Yaari Y (2014) Role of small conductance Ca(2)(+)-activated K(+) channels in controlling CA1 pyramidal cell excitability. J Neurosci 34(24):8219–8230

    PubMed  Google Scholar 

  • Chou R, Peterson K, Helfand M (2004) Comparative efficacy and safety of skeletal muscle relaxants for spasticity and musculoskeletal conditions: a systematic review. J Pain Symptom Manag 28(2):140–175

    CAS  Google Scholar 

  • Clarke TK et al (2011) KCNJ6 is associated with adult alcohol dependence and involved in gene x early life stress interactions in adolescent alcohol drinking. Neuropsychopharmacology 36(6):1142–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coetzee WA et al (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–285

    CAS  PubMed  Google Scholar 

  • Cook JB et al (2014) Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3alpha,5alpha-THP and reduces long-term operant ethanol self-administration. J Neurosci 34(17):5824–5834

    PubMed  PubMed Central  Google Scholar 

  • Crabbe JC et al (1994) Quantitative trait loci mapping of genes that influence the sensitivity and tolerance to ethanol-induced hypothermia in BXD recombinant inbred mice. J Pharmacol Exp Ther 269(1):184–192

    CAS  PubMed  Google Scholar 

  • Crean CS, Tompson DJ (2013) The effects of ethanol on the pharmacokinetics, pharmacodynamics, safety, and tolerability of ezogabine (retigabine). Clin Ther 35(1):87–93

    CAS  PubMed  Google Scholar 

  • Criado-Marrero M, Santini E, Porter JT (2014) Modulating fear extinction memory by manipulating SK potassium channels in the infralimbic cortex. Front Behav Neurosci 8:96

    PubMed  PubMed Central  Google Scholar 

  • Cuzon Carlson VC et al (2011) Synaptic and morphological neuroadaptations in the putamen associated with long-term, relapsing alcohol drinking in primates. Neuropsychopharmacology 36(12):2513–2528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debanne D, Poo MM (2010) Spike-timing dependent plasticity beyond synapse – pre- and post-synaptic plasticity of intrinsic neuronal excitability. Front Synaptic Neurosci 2:21

    PubMed  PubMed Central  Google Scholar 

  • Demarest K et al (1999) Identification of an acute ethanol response quantitative trait locus on mouse chromosome 2. J Neurosci 19(2):549–561

    CAS  PubMed  Google Scholar 

  • Dopico AM, Bukiya AN, Bettinger JC (2017) Voltage-sensitive potassium channels of the BK type and their coding genes are alcohol targets in neurons. Handb Exp Pharmacol. https://doi.org/10.1007/164_2017_78

  • Doyle DA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

    CAS  PubMed  Google Scholar 

  • DSM-5 (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Arlington

    Google Scholar 

  • Durand D, Carlen PL (1984) Decreased neuronal inhibition in vitro after long-term administration of ethanol. Science 224(4655):1359–1361

    CAS  PubMed  Google Scholar 

  • Edenberg HJ et al (2010) Genome-wide association study of alcohol dependence implicates a region on chromosome 11. Alcohol Clin Exp Res 34(5):840–852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans SM, Bisaga A (2009) Acute interaction of baclofen in combination with alcohol in heavy social drinkers. Alcohol Clin Exp Res 33(1):19–30

    CAS  PubMed  Google Scholar 

  • Federici M et al (2009) Ethanol enhances GABAB-mediated inhibitory postsynaptic transmission on rat midbrain dopaminergic neurons by facilitating GIRK currents. Eur J Neurosci 29(7):1369–1377

    PubMed  Google Scholar 

  • Fonseca DS (2012) Potassium channels: types, structure, and blockers. In: Cell biology research progress. Nova Biomedical Books, New York, p xi, 145

    Google Scholar 

  • Foroud T et al (2000) Identification of quantitative trait loci influencing alcohol consumption in the high alcohol drinking and low alcohol drinking rat lines. Behav Genet 30(2):131–140

    CAS  PubMed  Google Scholar 

  • Gallegos RA et al (1999) Adaptive responses of gamma-aminobutyric acid neurons in the ventral tegmental area to chronic ethanol. J Pharmacol Exp Ther 291(3):1045–1053

    CAS  PubMed  Google Scholar 

  • Garbutt JC et al (2010) Efficacy and safety of baclofen for alcohol dependence: a randomized, double-blind, placebo-controlled trial. Alcohol Clin Exp Res 34(11):1849–1857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garduno J et al (2005) 1-Ethyl-2-benzimidazolinone (EBIO) suppresses epileptiform activity in in vitro hippocampus. Neuropharmacology 49(3):376–388

    CAS  PubMed  Google Scholar 

  • Gonzales RA, Job MO, Doyon WM (2004) The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 103(2):121–146

    CAS  PubMed  Google Scholar 

  • Gonzalez C et al (2012) K(+) channels: function-structural overview. Compr Physiol 2(3):2087–2149

    PubMed  Google Scholar 

  • Gorelova N et al (2012) The glutamatergic component of the mesocortical pathway emanating from different subregions of the ventral midbrain. Cereb Cortex 22(2):327–336

    PubMed  Google Scholar 

  • Grube S et al (2011) A CAG repeat polymorphism of KCNN3 predicts SK3 channel function and cognitive performance in schizophrenia. EMBO Mol Med 3(6):309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu N et al (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 566(Pt 3):689–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen HH et al (2008) Kv7 channels: interaction with dopaminergic and serotonergic neurotransmission in the CNS. J Physiol 586(7):1823–1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison NL et al (2017) Effects of acute alcohol on excitability in the CNS. Neuropharmacology 122:36–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heilig M et al (2011) Pharmacogenetic approaches to the treatment of alcohol addiction. Nat Rev Neurosci 12(11):670–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henze DA, Wittner L, Buzsaki G (2002) Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat Neurosci 5(8):790–795

    CAS  PubMed  Google Scholar 

  • Herman MA et al (2015) GIRK3 gates activation of the mesolimbic dopaminergic pathway by ethanol. Proc Natl Acad Sci U S A 112(22):7091–7096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hibino H et al (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90(1):291–366

    CAS  PubMed  Google Scholar 

  • Hill KG et al (2003) Reduced ethanol-induced conditioned taste aversion and conditioned place preference in GIRK2 null mutant mice. Psychopharmacology 169(1):108–114

    CAS  PubMed  Google Scholar 

  • Hopf FW et al (2007) Withdrawal from intermittent ethanol exposure increases probability of burst firing in VTA neurons in vitro. J Neurophysiol 98(4):2297–2310

    CAS  PubMed  Google Scholar 

  • Hopf FW et al (2010) Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Neuron 65(5):682–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopf FW et al (2011) Chlorzoxazone, an SK-type potassium channel activator used in humans, reduces excessive alcohol intake in rats. Biol Psychiatry 69(7):618–624

    CAS  PubMed  Google Scholar 

  • Howard RJ et al (2007) Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron 53(5):663–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W et al (2015) Effects of acamprosate on attentional set-shifting and cellular function in the prefrontal cortex of chronic alcohol-exposed mice. Alcohol Clin Exp Res 39(6):953–961

    CAS  PubMed  Google Scholar 

  • Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391(6669):803–806

    CAS  PubMed  Google Scholar 

  • Jenkinson DH (2006) Potassium channels – multiplicity and challenges. Br J Pharmacol 147(Suppl 1):S63–S71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jentsch TJ (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 1(1):21–30

    CAS  PubMed  Google Scholar 

  • Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol 588(Pt 17):3187–3200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SJ et al (2012) Family-based genome-wide association study of frontal theta oscillations identifies potassium channel gene KCNJ6. Genes Brain Behav 11(6):712–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S et al (2017) Ethanol withdrawal drives anxiety-related behaviors by reducing M-type potassium channel activity in the lateral habenula. Neuropsychopharmacology 42(9):1813–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karschin C et al (1996) IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J Neurosci 16(11):3559–3570

    CAS  PubMed  Google Scholar 

  • Kaufmann K et al (2013) ML297 (VU0456810), the first potent and selective activator of the GIRK potassium channel, displays antiepileptic properties in mice. ACS Chem Neurosci 4(9):1278–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kendler KS et al (2011) Genomewide association analysis of symptoms of alcohol dependence in the molecular genetics of schizophrenia (MGS2) control sample. Alcohol Clin Exp Res 35(5):963–975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kenna GA et al (2012) Association of the 5-HTT gene-linked promoter region (5-HTTLPR) polymorphism with psychiatric disorders: review of psychopathology and pharmacotherapy. Pharmgenomics Pers Med 5:19–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • King BL et al (2016) Calcium activated K(+) channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing. Gene 578(1):63–73

    CAS  PubMed  Google Scholar 

  • Knapp CM et al (2014) The Kv7 potassium channel activator retigabine decreases alcohol consumption in rats. Am J Drug Alcohol Abuse 40(3):244–250

    PubMed  Google Scholar 

  • Kobayashi T et al (1999) Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat Neurosci 2(12):1091–1097

    CAS  PubMed  Google Scholar 

  • Kobayashi K et al (2008) K(+)-channel openers suppress epileptiform activities induced by 4-aminopyridine in cultured rat hippocampal neurons. J Pharmacol Sci 108(4):517–528

    CAS  PubMed  Google Scholar 

  • Koob GF (2013) Addiction is a reward deficit and stress surfeit disorder. Front Psych 4:72

    Google Scholar 

  • Kourrich S, Thomas MJ (2009) Similar neurons, opposite adaptations: psychostimulant experience differentially alters firing properties in accumbens core versus shell. J Neurosci 29(39):12275–12283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kourrich S, Calu DJ, Bonci A (2015) Intrinsic plasticity: an emerging player in addiction. Nat Rev Neurosci 16(3):173–184

    CAS  PubMed  Google Scholar 

  • Koyama S, Appel SB (2006) Characterization of M-current in ventral tegmental area dopamine neurons. J Neurophysiol 96(2):535–543

    CAS  PubMed  Google Scholar 

  • Koyama S, Brodie MS, Appel SB (2007) Ethanol inhibition of m-current and ethanol-induced direct excitation of ventral tegmental area dopamine neurons. J Neurophysiol 97(3):1977–1985

    CAS  PubMed  Google Scholar 

  • Kozell LB et al (2009) Mapping a barbiturate withdrawal locus to a 0.44 Mb interval and analysis of a novel null mutant identify a role for Kcnj9 (GIRK3) in withdrawal from pentobarbital, zolpidem, and ethanol. J Neurosci 29(37):11662–11673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kranzler HR, McKay JR (2012) Personalized treatment of alcohol dependence. Curr Psychiatry Rep 14(5):486–493

    PubMed  PubMed Central  Google Scholar 

  • Kranzler HR et al (2017) Precision medicine and pharmacogenetics: what does oncology have that addiction medicine does not? Addiction 112(12):2086–2094. https://doi.org/10.1111/add.13818

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo MM et al (2005) Prokaryotic K(+) channels: from crystal structures to diversity. FEMS Microbiol Rev 29(5):961–985

    CAS  PubMed  Google Scholar 

  • Lawrence JJ et al (2006) Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. J Neurosci 26(47):12325–12338

    CAS  PubMed  Google Scholar 

  • Leggio L, Garbutt JC, Addolorato G (2010) Effectiveness and safety of baclofen in the treatment of alcohol dependent patients. CNS Neurol Disord Drug Targets 9(1):33–44

    CAS  PubMed  Google Scholar 

  • Leggio L et al (2012) Baclofen promotes alcohol abstinence in alcohol dependent cirrhotic patients with hepatitis C virus (HCV) infection. Addict Behav 37(4):561–564

    CAS  PubMed  Google Scholar 

  • Leggio L et al (2013) A human laboratory pilot study with baclofen in alcoholic individuals. Pharmacol Biochem Behav 103(4):784–791

    CAS  PubMed  Google Scholar 

  • Lewohl JM et al (1999) G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action. Nat Neurosci 2(12):1084–1090

    CAS  PubMed  Google Scholar 

  • Llamosas N et al (2015) Deletion of GIRK2 subunit of GIRK channels alters the 5-HT1A receptor-mediated signaling and results in a depression-resistant behavior. Int J Neuropsychopharmacol 18(11):pyv051

    PubMed  PubMed Central  Google Scholar 

  • Lo CL et al (2016) High resolution genomic scans reveal genetic architecture controlling alcohol preference in bidirectionally selected rat model. PLoS Genet 12(8):e1006178

    PubMed  PubMed Central  Google Scholar 

  • Logothetis DE et al (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325(6102):321–326

    CAS  PubMed  Google Scholar 

  • Lowery-Gionta EG, Marcinkiewcz CA, Kash TL (2015) Functional alterations in the dorsal raphe nucleus following acute and chronic ethanol exposure. Neuropsychopharmacology 40(3):590–600

    CAS  PubMed  Google Scholar 

  • Luscher C, Slesinger PA (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 11(5):301–315

    PubMed  PubMed Central  Google Scholar 

  • Maccioni P, Colombo G (2009) Role of the GABA(B) receptor in alcohol-seeking and drinking behavior. Alcohol 43(7):555–558

    CAS  PubMed  Google Scholar 

  • Maffie J, Rudy B (2008) Weighing the evidence for a ternary protein complex mediating A-type K+ currents in neurons. J Physiol 586(23):5609–5623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire EP et al (2014) Extrasynaptic glycine receptors of rodent dorsal raphe serotonergic neurons: a sensitive target for ethanol. Neuropsychopharmacology 39(5):1232–1244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcinkiewcz CA et al (2015) Ethanol induced adaptations in 5-HT2c receptor signaling in the bed nucleus of the stria terminalis: implications for anxiety during ethanol withdrawal. Neuropharmacology 89:157–167

    CAS  PubMed  Google Scholar 

  • Marrion NV (1997) Control of M-current. Annu Rev Physiol 59:483–504

    CAS  PubMed  Google Scholar 

  • Marty A, Neher E (1985) Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol 367:117–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marty VN, Spigelman I (2012) Long-lasting alterations in membrane properties, k(+) currents, and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence. Front Neurosci 6:86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos-Aparicio P, Murphy R, Storm JF (2014) Complementary functions of SK and Kv7/M potassium channels in excitability control and synaptic integration in rat hippocampal dentate granule cells. J Physiol 592(4):669–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCrossan ZA, Abbott GW (2004) The MinK-related peptides. Neuropharmacology 47(6):787–821

    CAS  PubMed  Google Scholar 

  • McGeary J (2009) The DRD4 exon 3 VNTR polymorphism and addiction-related phenotypes: a review. Pharmacol Biochem Behav 93(3):222–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGuier NS et al (2016) Kv7 channels in the nucleus accumbens are altered by chronic drinking and are targets for reducing alcohol consumption. Addict Biol 21(6):1097–1112

    CAS  PubMed  Google Scholar 

  • Metten P et al (2014) Dual-trait selection for ethanol consumption and withdrawal: genetic and transcriptional network effects. Alcohol Clin Exp Res 38(12):2915–2924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller C (2000) An overview of the potassium channel family. Genome Biol 1(4):REVIEWS0004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MJ et al (2001) Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identified in a patient with schizophrenia. J Biol Chem 276(30):27753–27756

    CAS  PubMed  Google Scholar 

  • Moore SD, Madamba SG, Siggins GR (1990) Ethanol diminishes a voltage-dependent K+ current, the M-current, in CA1 hippocampal pyramidal neurons in vitro. Brain Res 516(2):222–228

    CAS  PubMed  Google Scholar 

  • Morley KC et al (2014) Baclofen for the treatment of alcohol dependence and possible role of comorbid anxiety. Alcohol Alcohol 49(6):654–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mrejeru A et al (2015) A subset of ventral tegmental area dopamine neurons responds to acute ethanol. Neuroscience 290:649–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulholland PJ (2012) K(Ca)2 channels: novel therapeutic targets for treating alcohol withdrawal and escalation of alcohol consumption. Alcohol 46(4):309–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulholland PJ et al (2009) Sizing up ethanol-induced plasticity: the role of small and large conductance calcium-activated potassium channels. Alcohol Clin Exp Res 33(7):1125–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulholland PJ et al (2011) Small conductance calcium-activated potassium type 2 channels regulate alcohol-associated plasticity of glutamatergic synapses. Biol Psychiatry 69(7):625–632

    CAS  PubMed  Google Scholar 

  • Mulholland PJ, Chandler LJ, Kalivas PW (2016) Signals from the fourth dimension regulate drug relapse. Trends Neurosci 39(7):472–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo-Anh TJ et al (2005) SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat Neurosci 8(5):642–649

    CAS  PubMed  Google Scholar 

  • NIAAA (2016) Alcohol facts and statistics. www.niaaa.nih.gov/alcohol-health/

    Google Scholar 

  • Nimitvilai S et al (2016) Chronic intermittent ethanol exposure enhances the excitability and synaptic plasticity of lateral orbitofrontal cortex neurons and induces a tolerance to the acute inhibitory actions of ethanol. Neuropsychopharmacology 41(4):1112–1127

    CAS  PubMed  Google Scholar 

  • Nimitvilai S et al (2017a) Orbitofrontal neuroadaptations and cross-species synaptic biomarkers in heavy-drinking macaques. J Neurosci 37(13):3646–3660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nimitvilai S et al (2017b) Ethanol dependence abolishes monoamine and GIRK (Kir3) channel inhibition of orbitofrontal cortex excitability. Neuropsychopharmacology 42(9):1800–1812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otis JM et al (2017) Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543(7643):103–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padula AE et al (2013) Novel anticonvulsants for reducing alcohol consumption: a review of evidence from preclinical rodent drinking models. OA Alcohol 1(1):2

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padula AE et al (2015) KCNN genes that encode small-conductance Ca2+-activated K+ channels influence alcohol and drug addiction. Neuropsychopharmacology 40(8):1928–1939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil N et al (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 11(2):126–129

    CAS  PubMed  Google Scholar 

  • Perra S et al (2011) In vivo ethanol experience increases D(2) autoinhibition in the ventral tegmental area. Neuropsychopharmacology 36(5):993–1002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perry CA et al (2008) Predisposition to late-onset obesity in GIRK4 knockout mice. Proc Natl Acad Sci U S A 105(23):8148–8153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Philip VM et al (2010) High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. Genes Brain Behav 9(2):129–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pleil KE et al (2015) Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala. Neuropharmacology 99:735–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ponomarev I et al (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci 32(5):1884–1897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radcliffe RA et al (2004) Quantitative trait loci mapping for ethanol sensitivity and neurotensin receptor density in an F2 intercross derived from inbred high and low alcohol sensitivity selectively bred rat lines. Alcohol Clin Exp Res 28(12):1796–1804

    CAS  PubMed  Google Scholar 

  • Renteria R, Buske TR, Morrisett RA (2017) Long-term subregion-specific encoding of enhanced ethanol intake by D1DR medium spiny neurons of the nucleus accumbens. Addict Biol. https://doi.org/10.1111/adb.12526

  • Reuveny E et al (1994) Activation of the cloned muscarinic potassium channel by G protein beta gamma subunits. Nature 370(6485):143–146

    CAS  PubMed  Google Scholar 

  • Rinker JA, Mulholland PJ (2017) Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 18(6):555–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rinker JA et al (2017) Differential potassium channel gene regulation in BXD mice reveals novel targets for pharmacogenetic therapies to reduce heavy alcohol drinking. Alcohol 58:33–45

    CAS  PubMed  Google Scholar 

  • Risinger FO, Cunningham CL (1998) Ethanol-induced conditioned taste aversion in BXD recombinant inbred mice. Alcohol Clin Exp Res 22(6):1234–1244

    CAS  PubMed  Google Scholar 

  • Roura-Ferrer M et al (2010) Impact of KCNE subunits on KCNQ1 (Kv7.1) channel membrane surface targeting. J Cell Physiol 225(3):692–700

    CAS  PubMed  Google Scholar 

  • Saccone SF et al (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16(1):36–49

    CAS  PubMed  Google Scholar 

  • Schilaty ND et al (2014) Acute ethanol inhibits dopamine release in the nucleus accumbens via alpha6 nicotinic acetylcholine receptors. J Pharmacol Exp Ther 349(3):559–567

    PubMed  PubMed Central  Google Scholar 

  • Schroeder BC et al (1998) Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396(6712):687–690

    CAS  PubMed  Google Scholar 

  • Schroeder BC et al (2000) KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem 275(31):24089–24095

    CAS  PubMed  Google Scholar 

  • Schulz R et al (2012) Network excitability in a model of chronic temporal lobe epilepsy critically depends on SK channel-mediated AHP currents. Neurobiol Dis 45(1):337–347

    CAS  PubMed  Google Scholar 

  • Schumacher MA et al (2001) Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410(6832):1120–1124

    CAS  PubMed  Google Scholar 

  • Sehgal M et al (2013) Learning to learn – intrinsic plasticity as a metaplasticity mechanism for memory formation. Neurobiol Learn Mem 105:186–199

    PubMed  Google Scholar 

  • Shah M et al (2002) Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol 544(Pt 1):29–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah A et al (2017) The lateral habenula and alcohol: role of glutamate and M-type potassium channels. Pharmacol Biochem Behav 162:94–102

    CAS  PubMed  Google Scholar 

  • Signorini S et al (1997) Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc Natl Acad Sci U S A 94(3):923–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh NA et al (2008) Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization. J Physiol 586(14):3405–3423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stocker M (2004) Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nat Rev Neurosci 5(10):758–770

    CAS  PubMed  Google Scholar 

  • Sturgess JE et al (2011) Pharmacogenetics of alcohol, nicotine and drug addiction treatments. Addict Biol 16(3):357–376

    CAS  PubMed  Google Scholar 

  • Substance Abuse and Mental Health Administration (SAMHSA) (2015) National Survey on Drug Use and Health (NSDUH) 2015

    Google Scholar 

  • Syme CA et al (2000) Pharmacological activation of cloned intermediate- and small-conductance Ca(2+)-activated K(+) channels. Am J Physiol Cell Physiol 278(3):C570–C581

    CAS  PubMed  Google Scholar 

  • Tarantino LM et al (1998) Confirmation of quantitative trait loci for alcohol preference in mice. Alcohol Clin Exp Res 22(5):1099–1105

    CAS  PubMed  Google Scholar 

  • Trantham-Davidson H et al (2014) Chronic alcohol disrupts dopamine receptor activity and the cognitive function of the medial prefrontal cortex. J Neurosci 34(10):3706–3718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenberg JN, Mann C, Perry S (2015) Reference module in biomedical sciences. Choice: Curr Rev Acad Libraries 52(10):1633–1634

    Google Scholar 

  • Vergara C et al (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8(3):321–329

    CAS  PubMed  Google Scholar 

  • Wang HS, McKinnon D (1995) Potassium currents in rat prevertebral and paravertebral sympathetic neurones: control of firing properties. J Physiol 485(Pt 2):319–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HS et al (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282(5395):1890–1893

    CAS  PubMed  Google Scholar 

  • Wittekindt OH et al (2004) An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel. Mol Pharmacol 65(3):788–801

    CAS  PubMed  Google Scholar 

  • Wu X et al (2013) Effects of morphine withdrawal on the membrane properties of medium spiny neurons in the nucleus accumbens shell. Brain Res Bull 90:92–99

    CAS  PubMed  Google Scholar 

  • Wydeven N et al (2014) Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297. Proc Natl Acad Sci U S A 111(29):10755–10760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XM et al (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395(6701):503–507

    CAS  PubMed  Google Scholar 

  • Xiao J, Zhen XG, Yang J (2003) Localization of PIP2 activation gate in inward rectifier K+ channels. Nat Neurosci 6(8):811–818

    CAS  PubMed  Google Scholar 

  • Yamada K et al (2012) Association study of the KCNJ3 gene as a susceptibility candidate for schizophrenia in the Chinese population. Hum Genet 131(3):443–451

    CAS  PubMed  Google Scholar 

  • Zaika O et al (2006) Angiotensin II regulates neuronal excitability via phosphatidylinositol 4,5-bisphosphate-dependent modulation of Kv7 (M-type) K+ channels. J Physiol 575(Pt 1):49–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zandany N et al (2015) Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism. Nat Commun 6:6488

    CAS  PubMed  Google Scholar 

  • Zhang X et al (2009) Divalent cations slow activation of EAG family K+ channels through direct binding to S4. Biophys J 97(1):110–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zwierzynska E, Krupa A, Pietrzak B (2015) A pharmaco-EEG study of the interaction between ethanol and retigabine in rabbits. Am J Drug Alcohol Abuse 41(2):153–160

    PubMed  Google Scholar 

  • Zwierzynska E, Andrzejczak D, Pietrzak B (2016) Does retigabine affect the development of alcohol dependence? – a pharmaco-EEG study. Neurosci Lett 611:6–13

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Mulholland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cannady, R., Rinker, J.A., Nimitvilai, S., Woodward, J.J., Mulholland, P.J. (2018). Chronic Alcohol, Intrinsic Excitability, and Potassium Channels: Neuroadaptations and Drinking Behavior. In: Grant, K., Lovinger, D. (eds) The Neuropharmacology of Alcohol . Handbook of Experimental Pharmacology, vol 248. Springer, Cham. https://doi.org/10.1007/164_2017_90

Download citation

Publish with us

Policies and ethics