Skip to main content

Voltage-Sensitive Potassium Channels of the BK Type and Their Coding Genes Are Alcohol Targets in Neurons

  • Chapter
  • First Online:
The Neuropharmacology of Alcohol

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 248))

Abstract

Among all members of the voltage-gated, TM6 ion channel superfamily, the proteins that constitute calcium- and voltage-gated potassium channels of large conductance (BK) and their coding genes are unique for their involvement in ethanol-induced disruption of normal physiology and behavior. Moreover, in vitro studies document that BK activity is modified by ethanol with an EC50~23 mM, which is near blood alcohol levels considered legal intoxication in most states of the USA (0.08 g/dL = 17.4 mM). Following a succinct introduction to our current understanding of BK structure and function in central neurons, with a focus on neural circuits that contribute to the neurobiology of alcohol use disorders (AUD), we review the modifications in organ physiology by alcohol exposure via BK and the different molecular elements that determine the ethanol response of BK in alcohol-naïve systems, including the role of an ethanol-recognizing site in the BK-forming slo1 protein, modulation of accessory BK subunits, and their coding genes. The participation of these and additional elements in determining the response of a system or an organism to protracted ethanol exposure is consequently analyzed, with insights obtained from invertebrate and vertebrate models. Particular emphasis is put on the role of BK and coding genes in different forms of tolerance to alcohol exposure. We finally discuss genetic results on BK obtained in invertebrate organisms and rodents in light of possible extrapolation to human AUD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As previously discussed (Dopico et al. 2014), “BK channel” should properly be used to denominate not only Ca2+ i-activated K+ channels of large conductance, which are products of the Slo1 gene (slo1 channels) and orthologs, but also the products of Slo2 and Slo3 genes, which render K+ channels gated by ions other than Ca2+. Thus, slo1 channels should be labeled \( {\mathrm{BK}}_{\mathrm{V},{\mathrm{Ca}}^{2+}} \). For consistency with most of the literature and brevity, we will simply use the term “BK” to design a protein complex (with or without regulatory subunits) where the channel-forming subunits are slo1 proteins.

  2. 2.

    Unless otherwise stated, statements in this chapter refer to findings obtained in rat or mouse brain and neurons.

Abbreviations

ACA:

Acetaldehyde

AFT:

Acute functional tolerance

AHP:

Afterhyperpolarization

AMPA:

2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid

AP:

Action potential

AUD:

Alcohol use disorders

BK:

Voltage- and calcium-gated potassium channel of large conductance

CaV :

Voltage-gated calcium channel

CIE:

Chronic intermittent ethanol

cPC:

Cerebellar Purkinje cell

CTD:

Cytosolic tail domain

DA:

Dopamine

EC:

Extracellular

EC50 :

Ligand concentration at which 50% of the ligand’s maximal effect is reached

fAHP:

Fast afterhyperpolarization

GABA:

4-Aminobutanoic acid

GLUT:

Glutamate

HIC:

Handling-induced convulsions

I:

Macroscopic current

i/IC:

Intracellular

Ibtx:

Iberiotoxin

KO:

Knockout

KV :

Voltage-gated potassium channel

LORR:

Loss of righting reflex

MSN:

Medium spiny neuron

NMDA:

N-methyl-d-aspartate

PGD:

Pore-gate domain

PKA:

Protein kinase A

Po:

Open probability

POPE:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

RCK:

Regulatory of conductance for potassium

SCN:

Suprachiasmatic neurons

SN:

Substantia nigra

TM:

Transmembrane

VSD:

Voltage-sensor domain

VTA:

Ventro-tegmental area

References

  • Abrahao KP, Chancey JH, Chan CS et al (2017) Ethanol-sensitive pacemaker neurons in the mouse external globus pallidus. Neuropsychopharmacology 42:1070–1081

    CAS  PubMed  Google Scholar 

  • Balderas E, Zhang J, Stefani E et al (2015) Mitochondrial BKCa channel. Front Physiol 6:104

    PubMed  PubMed Central  Google Scholar 

  • Bettinger JC, Davies AG (2014) The role of the BK channel in ethanol response behaviors: evidence from model organism and human studies. Front Physiol 5:346

    PubMed  PubMed Central  Google Scholar 

  • Bettinger JC, Leung K, Bolling MH et al (2012) Lipid environment modulates the development of acute tolerance to ethanol in Caenorhabditis elegans. PLoS One 7:e35129

    Google Scholar 

  • Bian S, Bai JP, Chapin H et al (2011) Interactions between beta-catenin and the HSlo potassium channel regulates HSlo surface expression. PLoS One 6:e28264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bock T, Stuart GJ (2016) The impact of BK channels on cellular excitability depends on their subcellular location. Front Cell Neurosci 10:206

    PubMed  PubMed Central  Google Scholar 

  • Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275:6453–6461

    CAS  PubMed  Google Scholar 

  • Bukiya AN, Kuntamallappanavar G, Edwards J et al (2014) An alcohol-sensing site in the calcium- and voltage-gated, large conductance potassium (BK) channel. Proc Natl Acad Sci U S A 111:9313–9318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casale AE, Foust AJ, Bal T et al (2015) Cortical interneuron subtypes vary in their axonal action potential properties. J Neurosci 35:15555–15567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheron G, Sausbier M, Sausbier U et al (2009) BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo. PLoS One 4:e7991

    PubMed  PubMed Central  Google Scholar 

  • Chu B, Treistman SN (1997) Modulation of two cloned potassium channels by 1-alkanols demonstrates different cutoffs. Alcohol Clin Exp Res 21:1103–1107

    CAS  PubMed  Google Scholar 

  • Contet C, Goulding SP, Kuljis DA et al (2016) BK channels in the central nervous system. Int Rev Neurobiol 128:281–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cowmeadow RB, Krishnan HR, Atkinson NS (2005) The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila. Alcohol Clin Exp Res 29:1777–1786

    CAS  PubMed  Google Scholar 

  • Cowmeadow RB, Krishnan HR, Ghezzi A et al (2006) Ethanol tolerance caused by slowpoke induction in Drosophila. Alcohol Clin Exp Res 30:745–753

    CAS  PubMed  Google Scholar 

  • Crowley JJ, Treistman SN, Dopico AM (2003) Cholesterol antagonizes ethanol potentiation of human brain BKCa channels reconstituted into phospholipid bilayers. Mol Pharmacol 64:365–372

    CAS  PubMed  Google Scholar 

  • Crowley JJ, Treistman SN, Dopico AM (2005) Distinct structural features of phospholipids differentially determine ethanol sensitivity and basal function of BK channels. Mol Pharmacol 68:4–10

    CAS  PubMed  Google Scholar 

  • Davies AG, Pierce-Shimomura JT, Kim H et al (2003) A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115:655–666

    CAS  PubMed  Google Scholar 

  • Davies AG, Bettinger JC, Thiele TR et al (2004) Natural variation in the npr-1 gene modifies ethanol responses of wild strains of C. elegans. Neuron 42:731–743

    CAS  PubMed  Google Scholar 

  • Davis SJ, Scott LL, Hu K et al (2014) Conserved single residue in the BK potassium channel required for activation by alcohol and intoxication in C. elegans. J Neurosci 34:9562–9573

    PubMed  PubMed Central  Google Scholar 

  • Davis SJ, Scott LL, Ordemann G et al (2015) Putative calcium-binding domains of the Caenorhabditis elegans BK channel are dispensable for intoxication and ethanol activation. Genes Brain Behav 14:454–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dopico AM, Lovinger DM (2009) Acute alcohol action and desensitization of ligand-gated ion channels. Pharmacol Rev 61:98–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dopico AM, Lemos JR, Treistman SN (1996) Ethanol increases the activity of large conductance, Ca(2+)-activated K+ channels in isolated neurohypophysial terminals. Mol Pharmacol 49:40–48

    CAS  PubMed  Google Scholar 

  • Dopico AM, Anantharam V, Treistman SN (1998) Ethanol increases the activity of Ca(++)-dependent K+ (mslo) channels: functional interaction with cytosolic Ca++. J Pharmacol Exp Ther 284:258–268

    CAS  PubMed  Google Scholar 

  • Dopico AM, Bukiya AN, Singh AK (2012) Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol. Pharmacol Ther 135:133–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dopico AM, Bukiya AN, Martin GE (2014) Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior. Front Physiol 5:1–13

    Google Scholar 

  • Dopico AM, Bukiya AN, Kuntamallappanavar G et al (2016) Modulation of BK channels by ethanol. Int Rev Neurobiol 128:239–279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas RM, Lai JC, Bian S et al (2006) The calcium-sensitive large-conductance potassium channel (BK/MAXI K) is present in the inner mitochondrial membrane of rat brain. Neuroscience 139:1249–1261

    CAS  PubMed  Google Scholar 

  • Dwyer DS, Bradley RJ (2000) Chemical properties of alcohols and their protein binding sites. Cell Mol Life Sci 57:265–275

    CAS  PubMed  Google Scholar 

  • Edenberg HJ, Koller DL, Xuei X et al (2010) Genome-wide association study of alcohol dependence implicates a region on chromosome 11. Alcohol Clin Exp Res 34:840–852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edgerton JR, Reinhart PH (2003) Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol 548:53–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehling P, Cerina M, Meuth P et al (2013) Ca(2+)-dependent large conductance K(+) currents in thalamocortical relay neurons of different rat strains. Pflugers Arch 465:469–480

    CAS  PubMed  Google Scholar 

  • Faber ES, Sah P (2003) Ca2+-activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala. J Physiol 552:483–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fakler B, Adelman JP (2008) Control of K(Ca) channels by calcium nano/microdomains. Neuron 59:873–881

    CAS  PubMed  Google Scholar 

  • Fedorenko O, Yarotskyy V, Duzhyy D et al (2010) The large-conductance ion channels in the nuclear envelope of central neurons. Pflugers Arch 460:1045–1050

    CAS  PubMed  Google Scholar 

  • Feinberg-Zadek PL, Treistman SN (2007) Beta-subunits are important modulators of the acute response to alcohol in human BK channels. Alcohol Clin Exp Res 31:737–744

    CAS  PubMed  Google Scholar 

  • Feinberg-Zadek PL, Martin G, Treistman SN (2008) BK channel subunit composition modulates molecular tolerance to ethanol. Alcohol Clin Exp Res 32:1207–1216

    CAS  PubMed  Google Scholar 

  • Ghezzi A, Pohl JB, Wang Y et al (2010) BK channels play a counter-adaptive role in drug tolerance and dependence. Proc Natl Acad Sci U S A 107:16360–16365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghezzi A, Li X, Lew LK et al (2017) Alcohol-induced neuroadaptation is orchestrated by the histone acetyltransferase CBP. Front Mol Neurosci 10:103

    PubMed  PubMed Central  Google Scholar 

  • Golding NL, Jung HY, Mickus T et al (1999) Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J Neurosci 19:8789–8798

    CAS  PubMed  Google Scholar 

  • Gonzalez-Perez V, Xia XM, Lingle CJ (2015) Two classes of regulatory subunits coassemble in the same BK channel and independently regulate gating. Nat Commun 6:8341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grotewiel M, Bettinger JC (2015) Drosophila and Caenorhabditis elegans as discovery platforms for genes involved in human alcohol use disorder. Alcohol Clin Exp Res 39:1292–1311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu N, Vervaeke K, Storm JF (2007) BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580:859–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gumí-Audenis B, Costa L, Carlá F et al (2016) Structure and nanomechanics of model membranes by atomic force microscopy and spectroscopy: insights into the role of cholesterol and sphingolipids. Membranes (Basel) 6:E58

    Google Scholar 

  • Guo YY, Liu SB, Cui GB et al (2012) Acute stress induces down-regulation of large-conductance Ca2+-activated potassium channels in the lateral amygdala. J Physiol 590:875–886

    CAS  PubMed  Google Scholar 

  • Han S, Yang BZ, Kranzler HR et al (2013) Integrating GWASs and human protein interaction networks identifies a gene subnetwork underlying alcohol dependence. Am J Hum Genet 93:1027–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handlechner AG, Hermann A, Fuchs R et al (2013) Acetaldehyde-ethanol interactions on calcium-activated potassium (BK) channels in pituitary tumor (GH3) cells. Front Behav Neurosci 7:58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harris RA, Trudell JR, Mihic SJ (2008) Ethanol’s molecular targets. Sci Signal 1:re7

    PubMed  PubMed Central  Google Scholar 

  • Harrison NL, Skelly MJ, Grosserode EK et al (2017) Effects of acute alcohol on excitability in the CNS. Neuropharmacology 122:36–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Morinaga S, Liu X et al (2016) An EP2 agonist facilitates NMDA-induced outward currents and inhibits dendritic beading through activation of BK channels in mouse cortical neurons. Mediat Inflamm 2016:5079597

    Google Scholar 

  • Hermann A, Sitdikova GF, Weiger TM (2015) Oxidative stress and maxi calcium-activated potassium (BK) channels. Biomol Ther 5(3):1870–1911

    CAS  Google Scholar 

  • Hille B (2001) Ion channels in excitable cells, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hirono M, Ogawa Y, Misono K et al (2015) BK channels localize to the paranodal junction and regulate action potentials in myelinated axons of cerebellar Purkinje cells. J Neurosci 35:7082–7094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hung WC, Lee MT, Chen FY et al (2007) The condensing effect of cholesterol in lipid bilayers. Biophys J 92:3960–3967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakab M, Weiger TM, Hermann A (1997) Ethanol activates maxi Ca2+-activated K+ channels of clonal pituitary (GH3) cells. J Membr Biol 157:237–245

    CAS  PubMed  Google Scholar 

  • Jaramillo AM, Zheng X, Zhou Y et al (2004) Pattern of distribution and cycling of SLOB, slowpoke channel binding protein, in Drosophila. BMC Neurosci 5:3

    PubMed  PubMed Central  Google Scholar 

  • Ji X, Martin GE (2014) BK channels mediate dopamine inhibition of firing in a subpopulation of core nucleus accumbens medium spiny neurons. Brain Res 1588:1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuki H, Shinohara A, Fujimoto S et al (2005) Tetraethylammonium exacerbates ischemic neuronal injury in rat cerebrocortical slice cultures. Eur J Pharmacol 508:85–91

    CAS  PubMed  Google Scholar 

  • Kendler KS, Kalsi G, Holmans PA et al (2011) Genomewide association analysis of symptoms of alcohol dependence in the molecular genetics of schizophrenia (MGS2) control sample. Alcohol Clin Exp Res 35:963–975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kendler KS, Chen X, Dick D et al (2012) Recent advances in the genetic epidemiology and molecular genetics of substance use disorders. Nat Neurosci 15:181–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerns RT, Ravindranathan A, Hassan S et al (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. J Neurosci 25:2255–2266

    CAS  PubMed  Google Scholar 

  • Kimm T, Khaliq ZM, Bean BP (2015) Differential regulation of action potential shape and burst-frequency firing by BK and Kv2 channels in substantia nigra dopaminergic neurons. J Neurosci 35:16404–16417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knott TK, Dopico AM, Dayanithi G et al (2002) Integrated channel plasticity contributes to alcohol tolerance in neurohypophysial terminals. Mol Pharmacol 62:135–142

    CAS  PubMed  Google Scholar 

  • Kreifeldt M, Le D, Treistman SN et al (2013) BK channel beta1 and beta4 auxiliary subunits exert opposite influences on escalated ethanol drinking in dependent mice. Front Integr Neurosci 7:105

    PubMed  PubMed Central  Google Scholar 

  • Kreifeldt M, Cates-Gatto C, Roberts AJ et al (2015) BK channel β1 subunit contributes to behavioral adaptations elicited by chronic intermittent ethanol exposure. Alcohol Clin Exp Res 39:2394–2402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamoorthy-Natarajan G, Koide M (2016) BK channels in the vascular system. Int Rev Neurobiol 128:401–438

    CAS  PubMed  Google Scholar 

  • Kuntamallappanavar G, Dopico AM (2016) Alcohol modulation of BK channel gating depends on β subunit composition. J Gen Physiol 148:419–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuntamallappanavar G, Dopico AM (2017) BK β1 subunit-dependent facilitation of ethanol inhibition of BK current and cerebral artery constriction is mediated by the β1 transmembrane domain 2. Br J Pharmacol. https://doi.org/10.1111/bph.14046. [Epub ahead of print]

  • Kyle BD, Braun AP (2014) The regulation of BK channel activity by pre- and post-translational modifications. Front Physiol 5:316

    PubMed  PubMed Central  Google Scholar 

  • Levin SG, Konakov MV, Godukhin OV (2016) Role of BK(Ca) potassium channels in the mechanisms of modulatory effects of IL-10 on hypoxia-induced changes in activity of hippocampal neurons. Bull Exp Biol Med 160:643–645

    CAS  PubMed  Google Scholar 

  • Li B, Gao TM (2016) Functional role of mitochondrial and nuclear BK channels. Int Rev Neurobiol 128:163–191

    CAS  PubMed  Google Scholar 

  • Li Q, Yan J (2016) Modulation of BK Channel function by auxiliary beta and gamma subunits. Int Rev Neurobiol 128:51–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Madison R, Moore SD (2014) Presynaptic BK channels modulate ethanol-induced enhancement of GABAergic transmission in the rat central amygdala nucleus. J Neurosci 34:13714–13724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Liu J, Huang W et al (2003) Distinct regions of the slo subunit determine differential BKCa channel responses to ethanol. Alcohol Clin Exp Res 27:1640–1644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Asuncion-Chin M, Liu P et al (2006) CaM kinase II phosphorylation of slo Thr107 regulates activity and ethanol responses of BK channels. Nat Neurosci 9:41–49

    CAS  PubMed  Google Scholar 

  • Liu J, Vaithianathan T, Manivannan K et al (2008) Ethanol modulates BKCa channels by acting as an adjuvant of calcium. Mol Pharmacol 74:628–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Savtchouk I, Acharjee S et al (2011) Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells. J Neurophysiol 106:144–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu R, Alioua A, Kumar Y et al (2006) MaxiK channel partners: physiological impact. J Physiol 570:65–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ly C, Melman T, Barth AL et al (2011) Phase-resetting curve determines how BK currents affect neuronal firing. J Comput Neurosci 30:211–223

    PubMed  Google Scholar 

  • MacDonald SH, Ruth P, Knaus HG et al (2006) Increased large conductance calcium-activated potassium (BK) channel expression accompanied by STREX variant downregulation in the developing mouse CNS. BMC Dev Biol 6:37

    PubMed  PubMed Central  Google Scholar 

  • Magleby KL (2017) Structural biology: ion-channel mechanisms revealed. Nature 541:33–34

    CAS  PubMed  Google Scholar 

  • Marrero HG, Treistman SN, Lemos JR (2015) Ethanol effect on BK channels is modulated by magnesium. Alcohol Clin Exp Res 39:1671–1679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin G, Puig S, Pietrzykowski A et al (2004) Somatic localization of a specific large-conductance calcium-activated potassium channel subtype controls compartmentalized ethanol sensitivity in the nucleus accumbens. J Neurosci 24:6563–6572

    CAS  PubMed  Google Scholar 

  • Martin GE, Hendrickson LM, Penta KL et al (2008) Identification of a BK channel auxiliary protein controlling molecular and behavioral tolerance to alcohol. Proc Natl Acad Sci U S A 105:17543–17548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martire M, Barrese V, D'Amico M et al (2010) Pre-synaptic BK channels selectively control glutamate versus GABA release from cortical and hippocampal nerve terminals. J Neurochem 115:411–422

    CAS  PubMed  Google Scholar 

  • Mitchell P, Mould R, Dillon J et al (2010) A differential role for neuropeptides in acute and chronic adaptive responses to alcohol: behavioural and genetic analysis in Caenorhabditis elegans. PLoS One 5:e10422

    PubMed  PubMed Central  Google Scholar 

  • Mulholland PJ, Becker HC, Woodward JJ et al (2011) Small conductance calcium-activated potassium type 2 channels regulate alcohol-associated plasticity of glutamatergic synapses. Biol Psychiatry 69:625–632

    CAS  PubMed  Google Scholar 

  • Nelson AB, Faulstich M, Moghadam S et al (2017) BK channels are required for multisensory plasticity in the oculomotor system. Neuron 93:211–220

    CAS  PubMed  Google Scholar 

  • N'Gouemo P (2011) Targeting BK (big potassium) channels in epilepsy. Expert Opin Ther Targets 15:1283–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh KH, Haney JJ, Wang X et al (2017) ERG-28 controls BK channel trafficking in the ER to regulate synaptic function and alcohol response in C. elegans. elife 6:e24733

    PubMed  PubMed Central  Google Scholar 

  • Palacio S, Velazquez-Marrero C, Marrero HG et al (2015) Time-dependent effects of ethanol on BK Channel expression and trafficking in hippocampal neurons. Alcohol Clin Exp Res 39:1619–1631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietrzykowski AZ, Martin GE, Puig SI et al (2004) Alcohol tolerance in large-conductance, calcium-activated potassium channels of CNS terminals is intrinsic and includes two components: decreased ethanol potentiation and decreased channel density. J Neurosci 24:8322–8332.

    CAS  PubMed  Google Scholar 

  • Pietrzykowski AZ, Friesen RM, Martin GE et al (2008) Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59:274–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen AN, Jansen-Olesen I, Olesen J et al (2011) Neuronal fast activating and meningeal silent modulatory BK channel splice variants cloned from rat. Pflugers Arch 461:65–75

    CAS  PubMed  Google Scholar 

  • Rancz EA, Häusser M (2006) Dendritic calcium spikes are tunable triggers of cannabinoid release and short-term synaptic plasticity in cerebellar Purkinje neurons. J Neurosci 26:5428–5437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Revah O, Lasser-Katz E, Fleidervish IA et al (2016) The earliest neuronal responses to hypoxia in the neocortical circuit are glutamate-dependent. Neurobiol Dis 95:158–167

    CAS  PubMed  Google Scholar 

  • Rinker JA, Mulholland PJ (2017) Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 18:555–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rinker JA, Fulmer DB, Trantham-Davidson H et al (2017) Differential potassium channel gene regulation in BXD mice reveals novel targets for pharmacogenetic therapies to reduce heavy alcohol drinking. Alcohol 58:33–45

    CAS  PubMed  Google Scholar 

  • Rundén-Pran E, Haug FM, Storm JF et al (2002) BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures. Neuroscience 112:277–288

    PubMed  Google Scholar 

  • Salzmann M, Seidel KN, Bernard R et al (2010) BK beta1 subunits contribute to BK channel diversity in rat hypothalamic neurons. Cell Mol Neurobiol 30:967–976

    CAS  PubMed  Google Scholar 

  • Schuckit MA, Wilhelmsen K, Smith TL et al (2005) Autosomal linkage analysis for the level of response to alcohol. Alcohol Clin Exp Res 29:1976–1982

    PubMed  Google Scholar 

  • Scott LL, Davis SJ, Yen RC et al (2017) Behavioral deficits following withdrawal from chronic ethanol are influenced by SLO channel function in Caenorhabditis elegans. Genetics 206:1445–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta B, Stemmler M, Laughlin SB et al (2010) Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Comput Biol 6:e1000840

    PubMed  PubMed Central  Google Scholar 

  • Shipston MJ, Tian L (2016) Posttranscriptional and posttranslational regulation of BK channels. Int Rev Neurobiol 128:91–126

    CAS  PubMed  Google Scholar 

  • Shruti S, Urban-Ciecko J, Fitzpatrick JA et al (2012) The brain-specific beta4 subunit downregulates BK channel cell surface expression. PLoS One 7:e33429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Li M, Hall L et al (2016) MaxiK channel interactome reveals its interaction with GABA transporter 3 and heat shock protein 60 in the mammalian brain. Neuroscience 317:76–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Springer SJ, Burkett BJ, Schrader LA (2015) Modulation of BK channels contributes to activity-dependent increase of excitability through MTORC1 activity in CA1 pyramidal cells of mouse hippocampus. Front Cell Neurosci 8:451

    PubMed  PubMed Central  Google Scholar 

  • Sun P, Zhang Q, Zhang Y et al (2015) Fear conditioning suppresses large-conductance calcium-activated potassium channels in lateral amygdala neurons. Physiol Behav 138:279–284

    CAS  PubMed  Google Scholar 

  • Tao X, Hite RK, MacKinnon R (2017) Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature 541:46–51

    CAS  PubMed  Google Scholar 

  • Treistman SN, Martin GE (2009) BK channels: mediators and models for alcohol tolerance. Trends Neurosci 32:629–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Typlt M, Mirkowski M, Azzopardi E et al (2013) Mice with deficient BK channel function show impaired prepulse inhibition and spatial learning, but normal working and spatial reference memory. PLoS One 8:e81270

    PubMed  PubMed Central  Google Scholar 

  • Vandael DH, Marcantoni A, Mahapatra S et al (2010) Ca(v)1.3 and BK channels for timing and regulating cell firing. Mol Neurobiol 42:185–198

    CAS  PubMed  Google Scholar 

  • Velázquez-Marrero C, Seale GE, Treistman SN et al (2014) Large conductance voltage- and Ca2+-gated potassium (BK) channel β4 subunit influences sensitivity and tolerance to alcohol by altering its response to kinases. J Biol Chem 289:29261–29272

    PubMed  PubMed Central  Google Scholar 

  • Velázquez-Marrero C, Burgos A, García JO et al (2016) Alcohol regulates BK surface expression via Wnt/β-catenin signaling. J Neurosci 36:10625–10639

    PubMed  PubMed Central  Google Scholar 

  • Verhulst B, Neale MC, Kendler KS (2014) The heritability of alcohol use disorders: a meta-analysis of twin and adoption studies. Psychol Med 45:1061–1072

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Sigworth FJ (2009) Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 461:292–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Krishnan HR, Ghezzi A et al (2007) Drug-induced epigenetic changes produce drug tolerance. PLoS Biol 5:e265

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ghezzi A, Yin JC et al (2009) CREB regulation of BK channel gene expression underlies rapid drug tolerance. Genes Brain Behav 8:369–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Bugay V, Ling L et al (2016) Knockout of the BK β4-subunit promotes a functional coupling of BK channels and ryanodine receptors that mediate a fAHP-induced increase in excitability. J Neurophysiol 116:456–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wessel R, Kristan WB Jr, Kleinfeld D (1999) Dendritic Ca(2+)-activated K(+) conductances regulate electrical signal propagation in an invertebrate neuron. J Neurosci 19:8319–8326

    CAS  PubMed  Google Scholar 

  • Whitt JP, Montgomery JR, Meredith AL (2016) BK channel inactivation gates daytime excitability in the circadian clock. Nat Commun 7:10837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Widmer H, Lemos JR, Treistman SN (1998) Ethanol reduces the duration of single evoked spikes by a selective inhibition of voltage-gated calcium currents in acutely dissociated supraoptic neurons of the rat. J Neuroendocrinol 10:399–406

    CAS  PubMed  Google Scholar 

  • Wolen AR, Phillips CA, Langston MA et al (2012) Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications. PLoS One 7:e33575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Yang Y, Ye S et al (2010) Structure of the gating ring from the human large-conductance Ca(2+)-gated K(+) channel. Nature 466:393–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XM, Zeng X, Lingle CJ (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418:880–884

    CAS  PubMed  Google Scholar 

  • Xie J, McCobb DP (1998) Control of alternative splicing of potassium channels by stress hormones. Science 280:443–446

    CAS  PubMed  Google Scholar 

  • Yuan C, O’Connell RJ, Jacob RF et al (2007) Regulation of the gating of BKCa channel by lipid bilayer thinkness. J Biol Chem 282:7276–7286

    CAS  PubMed  Google Scholar 

  • Yuan C, O’Connell RJ, Wilson A et al (2008) Acute alcohol tolerance is intrinsic to the BKCa protein, but is modulated by the lipid environment. J Biol Chem 283:5090–5098

    CAS  PubMed  Google Scholar 

  • Yuan P, Leonetti MD, Pico AR et al (2010) Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution. Science 329:182–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan C, Chen M, Covey DF et al (2011) Cholesterol tuning of BK ethanol response is enantioselective, and is a function of accompanying lipids. PLoS One 6:e27572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zemen BG, Lai MH, Whitt JP et al (2015) Generation of Kcnma1fl-tdTomato, a conditional deletion of the BK channel α subunit in mouse. Physiol Rep 3:e12612

    PubMed  PubMed Central  Google Scholar 

  • Zhang B, Zhang Y, Wu W et al (2017) Chronic glucocorticoid exposure activates BK-NLRP1 signal involving in hippocampal neuron damage. J Neuroinflammation 14:139

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Alcohol Abuse and Alcoholism through grants R37-AA11560 (AD), R01 AA-023764 (AB), and R01 AA-024482 (JB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex M. Dopico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dopico, A.M., Bukiya, A.N., Bettinger, J.C. (2017). Voltage-Sensitive Potassium Channels of the BK Type and Their Coding Genes Are Alcohol Targets in Neurons. In: Grant, K., Lovinger, D. (eds) The Neuropharmacology of Alcohol . Handbook of Experimental Pharmacology, vol 248. Springer, Cham. https://doi.org/10.1007/164_2017_78

Download citation

Publish with us

Policies and ethics