Skip to main content

Conserved Oligomeric Golgi and Neuronal Vesicular Trafficking

  • Chapter
Targeting Trafficking in Drug Development

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 245))

Abstract

The conserved oligomeric Golgi (COG) complex is an evolutionary conserved multi-subunit vesicle tethering complex essential for the majority of Golgi apparatus functions: protein and lipid glycosylation and protein sorting. COG is present in neuronal cells, but the repertoire of COG function in different Golgi-like compartments is an enigma. Defects in COG subunits cause alteration of Golgi morphology, protein trafficking, and glycosylation resulting in human congenital disorders of glycosylation (CDG) type II. In this review we summarize and critically analyze recent advances in the function of Golgi and Golgi-like compartments in neuronal cells and functions and dysfunctions of the COG complex and its partner proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Rahman S et al (2014) Filter-aided N-glycan separation (FANGS): a convenient sample preparation method for mass spectrometric N-glycan profiling. J Proteome Res 13:1167–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabidopsis Interactome Mapping Consortium (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333:601–607

    Article  PubMed Central  CAS  Google Scholar 

  • Arriagada C, Bustamante M, Atwater I, Rojas E, Caviedes R, Caviedes P (2010) Apoptosis is directly related to intracellular amyloid accumulation in a cell line derived from the cerebral cortex of a trisomy 16 mouse, an animal model of Down syndrome. Neurosci Lett 470:81–85

    Article  CAS  PubMed  Google Scholar 

  • Bailey Blackburn J, Pokrovskaya I, Fisher P, Ungar D, Lupashin VV (2016) COG complex complexities: detailed characterization of a complete set of HEK293T cells lacking individual COG subunits. Front Cell Dev Biol 4:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker RW, Jeffrey PD, Zick M, Phillips BP, Wickner WT, Hughson FM (2015) A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349:1111–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beznoussenko GV et al (2014) Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae. Elife 3. https://doi.org/10.7554/eLife.02009

  • Blackburn JB, Lupashin VV (2016) Creating knockouts of conserved oligomeric Golgi complex subunits using CRISPR-mediated gene editing paired with a selection strategy based on glycosylation defects associated with impaired COG complex function. Methods Mol Biol 1496:145–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166

    Article  CAS  PubMed  Google Scholar 

  • Brockhausen I, Schachter H, Stanley P (2009) O-GalNAc glycans. In: Varki A et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Bunge MB (1973) Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J Cell Biol 56:713–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N, Schuman EM (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellano B, Gonzalez B, Palacios G (1989) Cytochemical demonstration of TPPase in myelinated fibers in the central and peripheral nervous system of the rat. Brain Res 492:203–210

    Article  CAS  PubMed  Google Scholar 

  • Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanaugh LF, Chen X, Richardson BC, Ungar D, Pelczer I, Rizo J, Hughson FM (2007) Structural analysis of conserved oligomeric Golgi complex subunit 2. J Biol Chem 282:23418–23426

    Article  CAS  PubMed  Google Scholar 

  • Chatterton JE, Hirsch D, Schwartz JJ, Bickel PE, Rosenberg RD, Lodish HF, Krieger M (1999) Expression cloning of LDLB, a gene essential for normal Golgi function and assembly of the ldlCp complex. Proc Natl Acad Sci U S A 96:915–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung PY, Pfeffer SR (2016) Transport vesicle tethering at the trans Golgi network: coiled coil proteins in action. Front Cell Dev Biol 4:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou HT, Dukovski D, Chambers MG, Reinisch KM, Walz T (2016) CATCHR, HOPS and CORVET tethering complexes share a similar architecture. Nat Struct Mol Biol 23:761–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury A, Sharma DK, Marks DL, Pagano RE (2004) Elevated endosomal cholesterol levels in Niemann-Pick cells inhibit rab4 and perturb membrane recycling. Mol Biol Cell 15:4500–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Climer LK, Dobretsov M, Lupashin V (2015) Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function. Front Neurosci 9:405

    Article  PubMed  PubMed Central  Google Scholar 

  • Comstra HS et al (2017) The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors. Elife 6. https://doi.org/10.7554/eLife.24722

  • Cooper AA et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbett MA et al (2011) A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet 88:657–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottam NP, Ungar D (2012) Retrograde vesicle transport in the Golgi. Protoplasma 249:943–955

    Article  CAS  PubMed  Google Scholar 

  • D’Arcangelo JG, Stahmer KR, Miller EA (2013) Vesicle-mediated export from the ER: COPII coat function and regulation. Biochim Biophys Acta 1833:2464–2472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dodonova SO et al (2015) Vesicular Transport. A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349:195–198

    Article  CAS  PubMed  Google Scholar 

  • Dugan JM, deWit C, McConlogue L, Maltese WA (1995) The Ras-related GTP-binding protein, Rab1B, regulates early steps in exocytic transport and processing of beta-amyloid precursor protein. J Biol Chem 270:10982–10989

    Article  CAS  PubMed  Google Scholar 

  • Fotso P, Koryakina Y, Pavliv O, Tsiomenko AB, Lupashin VV (2005) Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J Biol Chem 280:27613–27623

    Article  CAS  PubMed  Google Scholar 

  • Foulquier F et al (2006) Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci U S A 103:3764–3769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foulquier F et al (2007) A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum Mol Genet 16:717–730

    Article  CAS  PubMed  Google Scholar 

  • Freeze HH, Chong JX, Bamshad MJ, Ng BG (2014) Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 94:161–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs-Telem D et al (2011) CEDNIK syndrome results from loss-of-function mutations in SNAP29. Br J Dermatol 164:610–616

    CAS  PubMed  Google Scholar 

  • Fukuda M, Kanno E, Ishibashi K, Itoh T (2008) Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity. Mol Cell Proteomics 7:1031–1042

    Article  CAS  PubMed  Google Scholar 

  • Fung CW et al (2012) COG5-CDG with a mild neurohepatic presentation. JIMD Rep 3:67–70

    Article  CAS  PubMed  Google Scholar 

  • Gillingham AK, Munro S (2016) Finding the Golgi: Golgin coiled-coil proteins show the way. Trends Cell Biol 26:399–408

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg SD et al (2010) Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer’s disease progression. Biol Psychiatry 68:885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giot L et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    Article  CAS  PubMed  Google Scholar 

  • Gitler AD et al (2008) The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci U S A 105:145–150

    Article  CAS  PubMed  Google Scholar 

  • Giuditta A, Hunt T, Santella L (1986) Rapid important paper: messenger RNA in squid axoplasm. Neurochem Int 8:435–442

    Article  CAS  PubMed  Google Scholar 

  • Glick BS, Luini A (2011) Models for Golgi traffic: a critical assessment. Cold Spring Harb Perspect Biol 3:a005215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick BS, Nakano A (2009) Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 25:113–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BS, Elston T, Oster G (1997) A cisternal maturation mechanism can explain the asymmetry of the Golgi stack. FEBS Lett 414:177–181

    Article  CAS  PubMed  Google Scholar 

  • Gokhale A et al (2012) Quantitative proteomic and genetic analyses of the schizophrenia susceptibility factor dysbindin identify novel roles of the biogenesis of lysosome-related organelles complex 1. J Neurosci 32:3697–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldfischer S (1982) The internal reticular apparatus of Camillo Golgi: a complex, heterogeneous organelle, enriched in acid, neutral, and alkaline phosphatases, and involved in glycosylation, secretion, membrane flow, lysosome formation, and intracellular digestion. J Histochem Cytochem 30:717–733

    Article  CAS  PubMed  Google Scholar 

  • Golgi C (1989) On the structure of nerve cells. J Microsc 155:3–7

    Article  CAS  PubMed  Google Scholar 

  • Gonatas NK, Stieber A, Gonatas JO (2006) Fragmentation of the Golgi apparatus in neurodegenerative diseases and cell death. J Neurol Sci 246:21–30

    Article  CAS  PubMed  Google Scholar 

  • Griffith DL, Bondareff W (1973) Localization of thiamine pyrophosphatase in synaptic vesicles. Am J Anat 136:549–556

    Article  CAS  PubMed  Google Scholar 

  • Ha JY et al (2014) Cog5-Cog7 crystal structure reveals interactions essential for the function of a multisubunit tethering complex. Proc Natl Acad Sci U S A 111:15762–15767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha JY, Chou HT, Ungar D, Yip CK, Walz T, Hughson FM (2016) Molecular architecture of the complete COG tethering complex. Nat Struct Mol Biol 23:758–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanus C, Ehlers MD (2016) Specialization of biosynthetic membrane trafficking for neuronal form and function. Curr Opin Neurobiol 39:8–16

    Article  CAS  PubMed  Google Scholar 

  • Hanus C et al (2016) Unconventional secretory processing diversifies neuronal ion channel properties. Elife 5. https://doi.org/10.7554/eLife.20609

  • Hasegawa H, Zinsser S, Rhee Y, Vik-Mo EO, Davanger S, Hay JC (2003) Mammalian ykt6 is a neuronal SNARE targeted to a specialized compartment by its profilin-like amino terminal domain. Mol Biol Cell 14:698–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa H, Yang Z, Oltedal L, Davanger S, Hay JC (2004) Intramolecular protein-protein and protein-lipid interactions control the conformation and subcellular targeting of neuronal Ykt6. J Cell Sci 117:4495–4508

    Article  CAS  PubMed  Google Scholar 

  • Horton AC, Ehlers MD (2003) Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J Neurosci 23:6188–6199

    Article  CAS  PubMed  Google Scholar 

  • Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huybrechts S et al (2012) Deficiency of subunit 6 of the conserved oligomeric golgi complex (COG6-CDG): second patient, different phenotype. JIMD Rep 4:103–108

    Article  CAS  PubMed  Google Scholar 

  • Jeyifous O et al (2009) SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nat Neurosci 12:1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DW, Sacher M, Scarpa A, Quinn AM, Ferro-Novick S (1999) High-copy suppressor analysis reveals a physical interaction between Sec34p and Sec35p, a protein implicated in vesicle docking. Mol Biol Cell 10:3317–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsley DM, Krieger M (1984) Receptor-mediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface-receptor activity. Proc Natl Acad Sci U S A 81:5454–5458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinger CM, Spang A, Dacks JB, Ettema TJ (2016) Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol Biol Evol 33:1528–1541

    Article  CAS  PubMed  Google Scholar 

  • Kodera H et al (2015) Mutations in COG2 encoding a subunit of the conserved oligomeric golgi complex cause a congenital disorder of glycosylation. Clin Genet 87:455–460

    Article  CAS  PubMed  Google Scholar 

  • Koenig E (1967) Synthetic mechanisms in the axon. IV. In vitro incorporation of [3H]precursors into axonal protein and RNA. J Neurochem 14:437–446

    Article  CAS  PubMed  Google Scholar 

  • Koumandou VL, Dacks JB, Coulson RM, Field MC (2007) Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol 7:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kozarsky KF, Brush HA, Krieger M (1986) Unusual forms of low density lipoprotein receptors in hamster cell mutants with defects in the receptor structural gene. J Cell Biol 102:1567–1575

    Article  CAS  PubMed  Google Scholar 

  • Kranz C et al (2007) COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum Mol Genet 16:731–741

    Article  CAS  PubMed  Google Scholar 

  • Kudlyk T, Willett R, Pokrovskaya ID, Lupashin V (2013) COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity. Traffic 14:194–204

    Article  CAS  PubMed  Google Scholar 

  • Kunwar AJ et al (2011) Lack of the endosomal SNAREs vti1a and vti1b led to significant impairments in neuronal development. Proc Natl Acad Sci U S A 108:2575–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laufman O, Kedan A, Hong W, Lev S (2009) Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing. EMBO J 28:2006–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laufman O, Hong W, Lev S (2011) The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport. J Cell Biol 194:459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laufman O, Hong W, Lev S (2013) The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes. J Cell Sci 126:1506–1516

    Article  CAS  PubMed  Google Scholar 

  • Lees JA, Yip CK, Walz T, Hughson FM (2010) Molecular organization of the COG vesicle tethering complex. Nat Struct Mol Biol 17:1292–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lencer WI, Delp C, Neutra MR, Madara JL (1992) Mechanism of cholera toxin action on a polarized human intestinal epithelial cell line: role of vesicular traffic. J Cell Biol 117:1197–1209

    Article  CAS  PubMed  Google Scholar 

  • Liu C et al (2017) Loss of the golgin GM130 causes Golgi disruption, Purkinje neuron loss, and ataxia in mice. Proc Natl Acad Sci U S A 114:346–351

    Article  CAS  PubMed  Google Scholar 

  • Lubbehusen J et al (2010) Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum Mol Genet 19:3623–3633

    Article  PubMed  CAS  Google Scholar 

  • Marshall RD (1974) The nature and metabolism of the carbohydrate-peptide linkages of glycoproteins. Biochem Soc Symp 40:17–26

    CAS  Google Scholar 

  • McConlogue L, Castellano F, de Wit C, Schenk D, Maltese WA (1996) Differential effects of a Rab6 mutant on secretory versus amyloidogenic processing of Alzheimer’s beta-amyloid precursor protein. J Biol Chem 271:1343–1348

    Article  CAS  PubMed  Google Scholar 

  • Merianda TT et al (2009) A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Mol Cell Neurosci 40:128–142

    Article  CAS  PubMed  Google Scholar 

  • Mikhaylova M, Bera S, Kobler O, Frischknecht R, Kreutz MR (2016) A dendritic Golgi satellite between ERGIC and retromer. Cell Rep 14:189–199

    Article  CAS  PubMed  Google Scholar 

  • Miller VJ et al (2013) Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J Biol Chem 288:4229–4240

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Weidman P, Luini A (1997) Variations on the intracellular transport theme: maturing cisternae and trafficking tubules. J Cell Biol 138:481–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mironov AA, Sesorova IS, Seliverstova EV, Beznoussenko GV (2017) Different Golgi ultrastructure across species and tissues: implications under functional and pathological conditions, and an attempt at classification. Tissue Cell 49:186–201

    Article  CAS  PubMed  Google Scholar 

  • Mogelsvang S, Gomez-Ospina N, Soderholm J, Glick BS, Staehelin LA (2003) Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell 14:2277–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollenhauer HH, Morre DJ (1978) Structural differences contrast higher plant and animal Golgi apparatus. J Cell Sci 32:357–362

    CAS  PubMed  Google Scholar 

  • Morava E et al (2007) A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia. Eur J Hum Genet 15:638–645

    Article  CAS  PubMed  Google Scholar 

  • Morelle W et al (2017) Galactose supplementation in patients with TMEM165-CDG rescues the glycosylation defects. J Clin Endocrinol Metab 102:1375–1386

    Article  PubMed  Google Scholar 

  • Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13:448–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullin AP, Gokhale A, Larimore J, Faundez V (2011) Cell biology of the BLOC-1 complex subunit dysbindin, a schizophrenia susceptibility gene. Mol Neurobiol 44:53–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng BG et al (2007) Molecular and clinical characterization of a Moroccan Cog7 deficient patient. Mol Genet Metab 91:201–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng BG, Sharma V, Sun L, Loh E, Hong W, Tay SK, Freeze HH (2011) Identification of the first COG-CDG patient of Indian origin. Mol Genet Metab 102:364–367

    Article  CAS  PubMed  Google Scholar 

  • Ngamukote S, Yanagisawa M, Ariga T, Ando S, RK Y (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103:2327–2341

    Article  CAS  PubMed  Google Scholar 

  • Ortiz D, Medkova M, Walch-Solimena C, Novick P (2002) Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J Cell Biol 157:1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paesold-Burda P et al (2009) Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum Mol Genet 18:4350–4356

    Article  CAS  PubMed  Google Scholar 

  • Palmigiano A et al (2017) MALDI-MS profiling of serum O-glycosylation and N-glycosylation in COG5-CDG. J Mass Spectrom 52:372–377

    Article  CAS  PubMed  Google Scholar 

  • Papanikou E, Day KJ, Austin J, Glick BS (2015) COPI selectively drives maturation of the early Golgi. Elife 4. https://doi.org/10.7554/eLife.13232

  • Pelham HR (2001) Traffic through the Golgi apparatus. J Cell Biol 155:1099–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelham HR, Rothman JE (2000) The debate about transport in the Golgi – two sides of the same coin? Cell 102:713–719

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer SR (2010) How the Golgi works: a cisternal progenitor model. Proc Natl Acad Sci U S A 107:19614–19618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce JP, Mayer T, McCarthy JB (2001) Evidence for a satellite secretory pathway in neuronal dendritic spines. Curr Biol 11:351–355

    Article  CAS  PubMed  Google Scholar 

  • Pokrovskaya ID, Willett R, Smith RD, Morelle W, Kudlyk T, Lupashin VV (2011) Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21:1554–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potelle S et al (2017) Manganese-induced turnover of TMEM165. Biochem J 474:1481–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quassollo G et al (2015) A RhoA signaling pathway regulates dendritic Golgi outpost formation. Curr Biol 25:971–982

    Article  CAS  PubMed  Google Scholar 

  • Ram RJ, Li B, Kaiser CA (2002) Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p. Mol Biol Cell 13:1484–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rendon WO, Martinez-Alonso E, Tomas M, Martinez-Martinez N, Martinez-Menarguez JA (2013) Golgi fragmentation is Rab and SNARE dependent in cellular models of Parkinson’s disease. Histochem Cell Biol 139:671–684

    Article  CAS  PubMed  Google Scholar 

  • Reynders E et al (2009) Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Hum Mol Genet 18:3244–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson BC, Smith RD, Ungar D, Nakamura A, Jeffrey PD, Lupashin VV, Hughson FM (2009) Structural basis for a human glycosylation disorder caused by mutation of the COG4 gene. Proc Natl Acad Sci U S A 106:13329–13334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizo J, Sudhof TC (2012) The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices – guilty as charged? Annu Rev Cell Dev Biol 28:279–308

    Article  CAS  PubMed  Google Scholar 

  • Robinson MS (2015) Forty years of Clathrin-coated vesicles. Traffic 16:1210–1238

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum EE, Vasiljevic E, Cleland SC, Flores C, Colley NJ (2014) The Gos28 SNARE protein mediates intra-Golgi transport of rhodopsin and is required for photoreceptor survival. J Biol Chem 289:32392–32409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossanese OW, Soderholm J, Bevis BJ, Sears IB, O’Connor J, Williamson EK, Glick BS (1999) Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol 145:69–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman JE (2002) Lasker basic medical research award. The machinery and principles of vesicle transport in the cell. Nat Med 8:1059–1062

    Article  CAS  PubMed  Google Scholar 

  • Rout MP, Field MC (2017) The evolution of organellar coat complexes and organization of the eukaryotic cell. Annu Rev Biochem 86:637–657

    Article  CAS  PubMed  Google Scholar 

  • Rush JS, Panneerselvam K, Waechter CJ, Freeze HH (2000) Mannose supplementation corrects GDP-mannose deficiency in cultured fibroblasts from some patients with Congenital Disorders of Glycosylation (CDG). Glycobiology 10:829–835

    Article  CAS  PubMed  Google Scholar 

  • Rymen D et al (2012) COG5-CDG: expanding the clinical spectrum. Orphanet J Rare Dis 7:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Rymen D et al (2015) Key features and clinical variability of COG6-CDG. Mol Genet Metab 116(3):163–170

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Nakamura Y, Satoh AK (2016) The roles of Syx5 in Golgi morphology and Rhodopsin transport in Drosophila photoreceptors. Biol Open 5:1420–1430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaheen R, Ansari S, Alshammari MJ, Alkhalidi H, Alrukban H, Eyaid W, Alkuraya FS (2013) A novel syndrome of hypohidrosis and intellectual disability is linked to COG6 deficiency. J Med Genet 50:431–436

    Article  CAS  PubMed  Google Scholar 

  • Shestakova A, Zolov S, Lupashin V (2006) COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7:191–204

    Article  CAS  PubMed  Google Scholar 

  • Shestakova A, Suvorova E, Pavliv O, Khaidakova G, Lupashin V (2007) Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J Cell Biol 179:1179–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson MA et al (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36:1225–1229

    Article  CAS  PubMed  Google Scholar 

  • Smith RD, Willett R, Kudlyk T, Pokrovskaya I, Paton AW, Paton JC, Lupashin VV (2009) The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin. Traffic 10:1502–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohda M et al (2007) The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity. Traffic 8:270–284

    Article  CAS  PubMed  Google Scholar 

  • Sohda M et al (2010) Interaction of Golgin-84 with the COG complex mediates the intra-Golgi retrograde transport. Traffic 11:1552–1566

    Article  CAS  PubMed  Google Scholar 

  • Soo KY et al (2015) Rab1-dependent ER-Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS. Acta Neuropathol 130:679–697

    Article  CAS  PubMed  Google Scholar 

  • Sprecher E et al (2005) A mutation in SNAP29, coding for a SNARE protein involved in intracellular trafficking, causes a novel neurocutaneous syndrome characterized by cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma. Am J Hum Genet 77:242–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley P, Schachter H, Taniguchi N (2009) N-Glycans. In: Varki A et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Suga K, Saito A, Tomiyama T, Mori H, Akagawa K (2005) Syntaxin 5 interacts specifically with presenilin holoproteins and affects processing of betaAPP in neuronal cells. J Neurochem 94:425–439

    Article  CAS  PubMed  Google Scholar 

  • Suga K, Saito A, Akagawa K (2015) ER stress response in NG108-15 cells involves upregulation of syntaxin 5 expression and reduced amyloid beta peptide secretion. Exp Cell Res 332:11–23

    Article  CAS  PubMed  Google Scholar 

  • Suvorova ES, Duden R, Lupashin VV (2002) The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157:631–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarassov K et al (2008) An in vivo map of the yeast protein interactome. Science 320:1465–1470

    Article  CAS  PubMed  Google Scholar 

  • Tennyson VM (1970) The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo. J Cell Biol 44:62–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thayanidhi N, Helm JR, Nycz DC, Bentley M, Liang Y, Hay JC (2010) Alpha-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol Biol Cell 21:1850–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi A, Ren Y, Jeffrey PD, Hughson FM (2009) Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex. Nat Struct Mol Biol 16:114–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uetz P et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  CAS  PubMed  Google Scholar 

  • Ungar D et al (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157:405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Rheenen SM, Cao X, Lupashin VV, Barlowe C, Waters MG (1998) Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J Cell Biol 141:1107–1119

    Article  Google Scholar 

  • Van Rheenen SM, Cao X, Sapperstein SK, Chiang EC, Lupashin VV, Barlowe C, Waters MG (1999) Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p. J Cell Biol 147:729–742

    Article  Google Scholar 

  • Walter DM, Paul KS, Waters MG (1998) Purification and characterization of a novel 13 S hetero-oligomeric protein complex that stimulates in vitro Golgi transport. J Biol Chem 273:29565–29576

    Article  CAS  PubMed  Google Scholar 

  • Walter AM et al (2014) The SNARE protein vti1a functions in dense-core vesicle biogenesis. EMBO J 33:1681–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber T et al (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  CAS  PubMed  Google Scholar 

  • Whyte JR, Munro S (2001) The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1:527–537

    Article  CAS  PubMed  Google Scholar 

  • Whyte JR, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115:2627–2637

    CAS  PubMed  Google Scholar 

  • Willett R, Kudlyk T, Pokrovskaya I, Schonherr R, Ungar D, Duden R, Lupashin V (2013a) COG complexes form spatial landmarks for distinct SNARE complexes. Nat Commun 4:1553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willett R, Ungar D, Lupashin V (2013b) The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 140:271–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willett R, Pokrovskaya I, Kudlyk T, Lupashin V (2014) Multipronged interaction of the COG complex with intracellular membranes. Cell Logist 4:e27888

    Article  PubMed  PubMed Central  Google Scholar 

  • Willett R, Blackburn JB, Climer L, Pokrovskaya I, Kudlyk T, Wang W, Lupashin V (2016) COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe a sub-complex. Sci Rep 6:29139

    Article  PubMed  PubMed Central  Google Scholar 

  • Witkos TM, Lowe M (2017) Recognition and tethering of transport vesicles at the Golgi apparatus. Curr Opin Cell Biol 47:16–23

    Article  CAS  PubMed  Google Scholar 

  • Wu X et al (2004) Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 10:518–523

    Article  CAS  PubMed  Google Scholar 

  • Yang A et al (2017) Further delineation of COG8-CDG: a case with novel compound heterozygous mutations diagnosed by targeted exome sequencing. Clin Chim Acta 471:191–195

    Article  CAS  PubMed  Google Scholar 

  • Ye B, Zhang Y, Song W, Younger SH, Jan LY, Jan YN (2007) Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu IM, Hughson FM (2010) Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26:137–156

    Article  CAS  PubMed  Google Scholar 

  • Yu RK, Macala LJ, Taki T, Weinfield HM, FS Y (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829

    Article  CAS  PubMed  Google Scholar 

  • Zeevaert R et al (2009) A new mutation in COG7 extends the spectrum of COG subunit deficiencies. Eur J Med Genet 52:303–305

    Article  PubMed  Google Scholar 

  • Zhou W, Chang J, Wang X, Savelieff MG, Zhao Y, Ke S, Ye B (2014) GM130 is required for compartmental organization of dendritic golgi outposts. Curr Biol 24:1227–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlatic S, Comstra HS, Gokhale A, Petris MJ, Faundez V (2015) Molecular basis of neurodegeneration and neurodevelopmental defects in Menkes disease. Neurobiol Dis 81:154–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolov SN, Lupashin VV (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are very grateful to Tanner E. Brackett for the creation and design of Fig. 1. This work was supported by the NIH grants GM083144 and U54 GM105814 and by the Pilot grant from the Arkansas Biosciences Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Lupashin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Climer, L.K., Hendrix, R.D., Lupashin, V.V. (2017). Conserved Oligomeric Golgi and Neuronal Vesicular Trafficking. In: Ulloa-Aguirre, A., Tao, YX. (eds) Targeting Trafficking in Drug Development. Handbook of Experimental Pharmacology, vol 245. Springer, Cham. https://doi.org/10.1007/164_2017_65

Download citation

Publish with us

Policies and ethics