Skip to main content

Investigating Internalization and Intracellular Trafficking of GPCRs: New Techniques and Real-Time Experimental Approaches

  • Chapter
Book cover Targeting Trafficking in Drug Development

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 245))

Abstract

The ability to regulate the interaction between cells and their extracellular environment is essential for the maintenance of appropriate physiological function. For G protein-coupled receptors (GPCRs), this regulation occurs through multiple mechanisms that provide spatial and temporal control for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies that have been used to investigate internalization and intracellular signaling of GPCRs, with a particular focus on emerging real-time techniques. These recent developments have improved our understanding of the complexities of GPCR internalization and intracellular signaling and suggest that the broader biological relevance and potential therapeutic implications of these processes remain to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG (2003) Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 160:321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arancibia-Carcamo IL, Fairfax BP, Moss SJ, Kittler JT (2006) Studying the localization, surface stability and endocytosis of neurotransmitter receptors by antibody labeling and biotinylation approaches. In: Kittler JT, Moss SJ (eds) The dynamic synapse: molecular methods in ionotropic receptor biology. CRC Press/Taylor & Francis, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Barak LS, Ferguson SSG, Zhang J, Caron MG (1997) A β-Arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272:27497–27500

    Article  CAS  PubMed  Google Scholar 

  • Beautrait A, Paradis JS, Zimmerman B, Giubilaro J, Nikolajev L, Armando S, Kobayashi H, Yamani L, Namkung Y, Heydenreich FM, Khoury E, Audet M, Roux PP, Veprintsev DB, Laporte SA, Bouvier M (2017) A new inhibitor of the beta-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nat Commun 8:15054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boivin B, Vaniotis G, Allen BG, Hebert TE (2008) G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm? J Recept Signal Transduct Res 28:15–28

    Article  CAS  PubMed  Google Scholar 

  • Boucrot E, Ferreira AP, Almeida-Souza L, Debard S, Vallis Y, Howard G, Bertot L, Sauvonnet N, McMahon HT (2015) Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517:460–465

    Article  CAS  PubMed  Google Scholar 

  • Cahill CM, Holdridge SV, Morinville A (2007) Trafficking of delta-opioid receptors and other G-protein-coupled receptors: implications for pain and analgesia. Trends Pharmacol Sci 28:23–31

    Article  CAS  PubMed  Google Scholar 

  • Cahill TJ 3rd, Thomsen AR, Tarrasch JT, Plouffe B, Nguyen AH, Yang F, Huang LY, Kahsai AW, Bassoni DL, Gavino BJ, Lamerdin JE, Triest S, Shukla AK, Berger B, JT L, Antar A, Blanc A, Qu CX, Chen X, Kawakami K, Inoue A, Aoki J, Steyaert J, Sun JP, Bouvier M, Skiniotis G, Lefkowitz RJ (2017) Distinct conformations of GPCR-beta-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc Natl Acad Sci U S A 114:2562–2567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C, Tacchetti C, Persani L, Lohse MJ (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 7:e1000172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calebiro D, Godbole A, Lyga S, Lohse MJ (2015) Trafficking and function of GPCRs in the endosomal compartment. Methods Mol Biol 1234:197–211

    Article  PubMed  Google Scholar 

  • Cao TT, Mays RW, von Zastrow M (1998) Regulated endocytosis of G-protein-coupled receptors by a biochemically and functionally distinct subpopulation of clathrin-coated pits. J Biol Chem 273:24592–24602

    Article  CAS  PubMed  Google Scholar 

  • Conn PM, Ulloa-Aguirre A (2010) Trafficking of G-protein-coupled receptors to the plasma membrane: insights for pharmacoperone drugs. Trends Endocrinol Metab 21:190–197

    Article  CAS  PubMed  Google Scholar 

  • Conn PM, Ulloa-Aguirre A, Ito J, Janovick JA (2007) G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol Rev 59:225–250

    Article  CAS  PubMed  Google Scholar 

  • Conn PM, Spicer TP, Scampavia L, Janovick JA (2015) Assay strategies for identification of therapeutic leads that target protein trafficking. Trends Pharmacol Sci 36:498–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dale LB, Bhattacharya M, Seachrist JL, Anborgh PH, Ferguson SS (2001) Agonist-stimulated and tonic internalization of metabotropic glutamate receptor 1a in human embryonic kidney 293 cells: agonist-stimulated endocytosis is beta-arrestin1 isoform-specific. Mol Pharmacol 60:1243–1253

    Article  CAS  PubMed  Google Scholar 

  • De Wire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen XT, Pitis PM, Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD (2013) A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 344:708–717

    Article  CAS  Google Scholar 

  • Diviani D, Lattion AL, Abuin L, Staub O, Cotecchia S (2003) The adaptor complex 2 directly interacts with the alpha 1b-adrenergic receptor and plays a role in receptor endocytosis. J Biol Chem 278:19331–19340

    Article  CAS  PubMed  Google Scholar 

  • Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  CAS  PubMed  Google Scholar 

  • Drake MT, Shenoy SK, Lefkowitz RJ (2006) Trafficking of G protein-coupled receptors. Circ Res 99:570–582

    Article  CAS  PubMed  Google Scholar 

  • Eichel K, Jullie D, von Zastrow M (2016) Beta-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat Cell Biol 18:303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksen J, Bjorn-Yoshimoto WE, Jorgensen TN, Newman AH, Gether U (2010) Postendocytic sorting of constitutively internalized dopamine transporter in cell lines and dopaminergic neurons. J Biol Chem 285:27289–27301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan GH, Yang W, Wang XJ, Qian Q, Richmond A (2001) Identification of a motif in the carboxyl terminus of CXCR2 that is involved in adaptin 2 binding and receptor internalization. Biochemistry 40:791–800

    Article  CAS  PubMed  Google Scholar 

  • Feinstein TN, Wehbi VL, Ardura JA, Wheeler DS, Ferrandon S, Gardella TJ, Vilardaga JP (2011) Retromer terminates the generation of cAMP by internalized PTH receptors. Nat Chem Biol 7:278–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinstein TN, Yui N, Webber MJ, Wehbi VL, Stevenson HP, King JD Jr, Hallows KR, Brown D, Bouley R, Vilardaga JP (2013) Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J Biol Chem 288:27849–27860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    CAS  PubMed  Google Scholar 

  • Ferguson SS, Downey WE 3rd, Colapietro AM, Barak LS, Menard L, Caron MG (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–366

    Article  CAS  PubMed  Google Scholar 

  • Feron O, Smith TW, Michel T, Kelly RA (1997) Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem 272:17744–17748

    Article  CAS  PubMed  Google Scholar 

  • Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R, Potts JT, Gardella TJ, Vilardaga JP (2009) Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol 5:734–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher GW, Adler SA, Fuhrman MH, Waggoner AS, Bruchez MP, Jarvik JW (2010) Detection and quantification of beta2AR internalization in living cells using FAP-based biosensor technology. J Biomol Screen 15:703–709

    Article  CAS  PubMed  Google Scholar 

  • Fraile-Ramos A, Kohout TA, Waldhoer M, Marsh M (2003) Endocytosis of the viral chemokine receptor US28 does not require beta-arrestins but is dependent on the clathrin-mediated pathway. Traffic 4:243–253

    Article  CAS  PubMed  Google Scholar 

  • Gales C, Rebois RV, Hogue M, Trieu P, Breit A, Hebert TE, Bouvier M (2005) Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods 2:177–184

    Article  CAS  PubMed  Google Scholar 

  • Geppetti P, Veldhuis NA, Lieu T, Bunnett NW (2015) G protein-coupled receptors: dynamic machines for signaling pain and itch. Neuron 88:635–649

    Article  CAS  PubMed  Google Scholar 

  • Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450

    Article  CAS  PubMed  Google Scholar 

  • Haasemann M, Cartaud J, Muller-Esterl W, Dunia I (1998) Agonist-induced redistribution of bradykinin B2 receptor in caveolae. J Cell Sci 111(Pt 7):917–928

    CAS  PubMed  Google Scholar 

  • Halls ML, Poole DP, Ellisdon AM, Nowell CJ, Canals M (2015) Detection and quantification of intracellular signaling using FRET-based biosensors and high content imaging. Methods Mol Biol 1335:131–161

    Article  PubMed  Google Scholar 

  • Halls ML, Yeatman HR, Nowell CJ, Thompson GL, Gondin AB, Civciristov S, Bunnett NW, Lambert NA, Poole DP, Canals M (2016) Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling. Sci Signal 9:ra16-ra16

    Article  CAS  Google Scholar 

  • Hamdan FF, Audet M, Garneau P, Pelletier J, Bouvier M (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J Biomol Screen 10:463–475

    Article  CAS  PubMed  Google Scholar 

  • Harper CB, Martin S, Nguyen TH, Daniels SJ, Lavidis NA, Popoff MR, Hadzic G, Mariana A, Chau N, McCluskey A, Robinson PJ, Meunier FA (2011) Dynamin inhibition blocks botulinum neurotoxin type A endocytosis in neurons and delays botulism. J Biol Chem 286:35966–35976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper CB, Popoff MR, McCluskey A, Robinson PJ, Meunier FA (2013) Targeting membrane trafficking in infection prophylaxis: dynamin inhibitors. Trends Cell Biol 23:90–101

    Article  CAS  PubMed  Google Scholar 

  • Herrera M, Sparks MA, Alfonso-Pecchio AR, Harrison-Bernard LM, Coffman TM (2013) Response to lack of specificity of commercial antibodies leads to misidentification of angiotensin type-1 receptor protein. Hypertension 61:e32

    Article  CAS  PubMed  Google Scholar 

  • Hislop JN, von Zastrow M (2011) Analysis of GPCR localization and trafficking. Methods Mol Biol 746:425–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holloway AC, Qian H, Pipolo L, Ziogas J, Miura S, Karnik S, Southwell BR, Lew MJ, Thomas WG (2002) Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 61:768–777

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Willars GB (2011) Generation of epitope-tagged GPCRs. Methods Mol Biol 746:53–84

    Article  CAS  PubMed  Google Scholar 

  • Irannejad R, von Zastrow M (2014) GPCR signaling along the endocytic pathway. Curr Opin Cell Biol 27:109–116

    Article  CAS  PubMed  Google Scholar 

  • Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert J, Rasmussen SG, Sunahara RK, El-Samad H, Huang B, von Zastrow M (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–538

    Article  CAS  PubMed  Google Scholar 

  • Ishizaka N, Griendling KK, Lassegue B, Alexander RW (1998) Angiotensin II type 1 receptor: relationship with caveolae and caveolin after initial agonist stimulation. Hypertension 32:459–466

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Ammendrup-Johnsen I, Jansen AM, Gether U, Madsen KL, Bräuner-Osborne H (2017) The GPRC6A receptor displays constitutive internalization and sorting to the slow recycling pathway. J Biol Chem 292:6910–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen BC, Swigart PM, Simpson PC (2009) Ten commercial antibodies for alpha-1-adrenergic receptor subtypes are nonspecific. Naunyn Schmiedeberg’s Arch Pharmacol 379:409–412

    Article  CAS  Google Scholar 

  • Jensen DD, Lieu T, Halls ML, Veldhuis NA, Imlach WL, Mai QN, Poole DP, Quach T, Aurelio L, Conner J, Herenbrink CK, Barlow N, Simpson JS, Scanlon MJ, Graham B, McCluskey A, Robinson PJ, Escriou V, Nassini R, Materazzi S, Geppetti P, Hicks GA, Christie MJ, Porter CJH, Canals M, Bunnett NW (2017) Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Sci Transl Med 9. https://doi.org/10.1126/scitranslmed.aal3447

  • Jorgensen R, Martini L, Schwartz TW, Elling CE (2005) Characterization of glucagon-like peptide-1 receptor beta-arrestin 2 interaction: a high-affinity receptor phenotype. Mol Endocrinol 19:812–823

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T (2017) Signaling bias in drug discovery. Expert Opin Drug Discov 12:321–333

    Article  CAS  PubMed  Google Scholar 

  • Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    Article  CAS  PubMed  Google Scholar 

  • Kifor O, Diaz R, Butters R, Kifor I, Brown EM (1998) The calcium-sensing receptor is localized in caveolin-rich plasma membrane domains of bovine parathyroid cells. J Biol Chem 273:21708–21713

    Article  CAS  PubMed  Google Scholar 

  • Klein Herenbrink C, Sykes DA, Donthamsetti P, Canals M, Coudrat T, Shonberg J, Scammells PJ, Capuano B, Sexton PM, Charlton SJ, Javitch JA, Christopoulos A, Lane JR (2016) The role of kinetic context in apparent biased agonism at GPCRs. Nat Commun 7:10842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotowski SJ, Hopf FW, Seif T, Bonci A, von Zastrow M (2011) Endocytosis promotes rapid dopaminergic signaling. Neuron 71:278–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuna RS, Girada SB, Asalla S, Vallentyne J, Maddika S, Patterson JT, Smiley DL, Di Marchi RD, Mitra P (2013) Glucagon-like peptide-1 receptor-mediated endosomal cAMP generation promotes glucose-stimulated insulin secretion in pancreatic beta-cells. Am J Physiol Endocrinol Metab 305:E161–E170

    Article  CAS  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS (1999) The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A 96:3712–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Appleton KM, Strungs EG, Kwon JY, Morinelli TA, Peterson YK, Laporte SA, Luttrell LM (2016) The conformational signature of beta-arrestin2 predicts its trafficking and signalling functions. Nature 531:665–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levoye A, Zwier JM, Jaracz-Ros A, Klipfel L, Cottet M, Maurel D, Bdioui S, Balabanian K, Prezeau L, Trinquet E, Durroux T, Bachelerie F (2015) A broad G protein-coupled receptor internalization assay that combines SNAP-tag labeling, diffusion-enhanced resonance energy transfer, and a highly emissive terbium cryptate. Front Endocrinol 6:167

    Article  Google Scholar 

  • Lobingier BT, Huttenhain R, Eichel K, Miller KB, Ting AY, von Zastrow M, Krogan NJ (2017) An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169:350–360.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) Beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550

    Article  CAS  PubMed  Google Scholar 

  • Lohse MJ, Nuber S, Hoffmann C (2012) Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 64:299–336

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Maudsley S, Bohn LM (2015) Fulfilling the promise of “biased” G protein-coupled receptor agonism. Mol Pharmacol 88:579–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyga S, Volpe S, Werthmann RC, Gotz K, Sungkaworn T, Lohse MJ, Calebiro D (2016) Persistent cAMP signaling by internalized LH receptors in ovarian follicles. Endocrinology 157:1613–1621

    Article  CAS  PubMed  Google Scholar 

  • Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10:839–850

    Article  CAS  PubMed  Google Scholar 

  • Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prezeau L, Trinquet E, Pin JP (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCluskey A, Daniel JA, Hadzic G, Chau N, Clayton EL, Mariana A, Whiting A, Gorgani NN, Lloyd J, Quan A, Moshkanbaryans L, Krishnan S, Perera S, Chircop M, von Kleist L, McGeachie AB, Howes MT, Parton RG, Campbell M, Sakoff JA, Wang X, Sun JY, Robertson MJ, Deane FM, Nguyen TH, Meunier FA, Cousin MA, Robinson PJ (2013) Building a better dynasore: the dyngo compounds potently inhibit dynamin and endocytosis. Traffic 14:1272–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore CA, Milano SK, Benovic JL (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69:451–482

    Article  CAS  PubMed  Google Scholar 

  • Mulherkar N, Raaben M, de la Torre JC, Whelan SP, Chandran K (2011) The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway. Virology 419:72–83

    Article  CAS  PubMed  Google Scholar 

  • Mullershausen F, Zecri F, Cetin C, Billich A, Guerini D, Seuwen K (2009) Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat Chem Biol 5:428–434

    Article  CAS  PubMed  Google Scholar 

  • Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M, Khoury E, Song M, Bouvier M, Laporte SA (2016) Monitoring G protein-coupled receptor and beta-arrestin trafficking in live cells using enhanced bystander BRET. Nat Commun 7:12178

    Article  PubMed  PubMed Central  Google Scholar 

  • Nuber S, Zabel U, Lorenz K, Nuber A, Milligan G, Tobin AB, Lohse MJ, Hoffmann C (2016) Beta-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nature 531:661–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275:17201–17210

    Article  CAS  PubMed  Google Scholar 

  • Oh P, Horner T, Witkiewicz H, Schnitzer JE (2012) Endothelin induces rapid, dynamin-mediated budding of endothelial caveolae rich in ET-B. J Biol Chem 287:17353–17362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto Y, Ninomiya H, Miwa S, Masaki T (2000) Cholesterol oxidation switches the internalization pathway of endothelin receptor type A from caveolae to clathrin-coated pits in Chinese hamster ovary cells. J Biol Chem 275:6439–6446

    Article  CAS  PubMed  Google Scholar 

  • Paek J, Kalocsay M, Staus DP, Wingler L, Pascolutti R, Paulo JA, Gygi SP, Kruse AC (2017) Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169:338–349.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paing MM, Temple BR, Trejo J (2004) A tyrosine-based sorting signal regulates intracellular trafficking of protease-activated receptor-1: multiple regulatory mechanisms for agonist-induced G protein-coupled receptor internalization. J Biol Chem 279:21938–21947

    Article  CAS  PubMed  Google Scholar 

  • Pampillo M, Babwah AV (2015) Quantifying GPCR internalization: a focus on the Kisspeptin receptor. Methods Mol Biol 1272:119–132

    Article  CAS  PubMed  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  CAS  PubMed  Google Scholar 

  • Porrello ER, Pfleger KD, Seeber RM, Qian H, Oro C, Abogadie F, Delbridge LM, Thomas WG (2011) Heteromerization of angiotensin receptors changes trafficking and arrestin recruitment profiles. Cell Signal 23:1767–1776

    Article  CAS  PubMed  Google Scholar 

  • Pradhan AA, Tawfik VL, Tipton AF, Scherrer G (2015) In vivo techniques to investigate the internalization profile of opioid receptors. Methods Mol Biol 1230:87–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Re M, Pampillo M, Savard M, Dubuc C, McArdle CA, Millar RP, Conn PM, Gobeil F Jr, Bhattacharya M, Babwah AV (2010) The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane. PLoS One 5:e11489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Renard HF, Simunovic M, Lemiere J, Boucrot E, Garcia-Castillo MD, Arumugam S, Chambon V, Lamaze C, Wunder C, Kenworthy AK, Schmidt AA, McMahon HT, Sykes C, Bassereau P, Johannes L (2015) Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517:493–496

    Article  CAS  PubMed  Google Scholar 

  • Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–1630

    Article  CAS  PubMed  Google Scholar 

  • Rizzolio S, Tamagnone L (2017) Antibody-feeding assay: a method to track the internalization of neuropilin-1 and other cell surface receptors. Methods Mol Biol 1493:311–319

    Article  CAS  PubMed  Google Scholar 

  • Roed SN, Wismann P, Underwood CR, Kulahin N, Iversen H, Cappelen KA, Schaffer L, Lehtonen J, Hecksher-Soerensen J, Secher A, Mathiesen JM, Bräuner-Osborne H, Whistler JL, Knudsen SM, Waldhoer M (2014) Real-time trafficking and signaling of the glucagon-like peptide-1 receptor. Mol Cell Endocrinol 382:938–949

    Article  CAS  PubMed  Google Scholar 

  • Roed SN, Nøhr AC, Wismann P, Iversen H, Bräuner-Osborne H, Knudsen SM, Waldhoer M (2015) Functional consequences of glucagon-like peptide-1 receptor cross-talk and trafficking. J Biol Chem 290:1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2011) β-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slessareva JE, Routt SM, Temple B, Bankaitis VA, Dohlman HG (2006) Activation of the phosphatidylinositol 3-kinase Vps34 by a G protein alpha subunit at the endosome. Cell 126:191–203

    Article  CAS  PubMed  Google Scholar 

  • Smith TH, Coronel LJ, Li JG, Dores MR, Nieman MT, Trejo J (2016) Protease-activated receptor-4 signaling and trafficking is regulated by the clathrin adaptor protein complex-2 independent of ß-arrestins. J Biol Chem 291:18453–18464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10:609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen AR, Plouffe B, Cahill TJ 3rd, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B, Mahoney JP, Huang L, Breton B, Heydenreich FM, Sunahara RK, Skiniotis G, Bouvier M, Lefkowitz RJ (2016) GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. Cell 166:907–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsvetanova NG, von Zastrow M (2014) Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat Chem Biol 10:1061–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida Y, Rutaganira FU, Jullie D, Shokat KM, von Zastrow M (2017) Endosomal phosphatidylinositol 3-kinase is essential for canonical GPCR signaling. Mol Pharmacol 91:65–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, Turnbull A, Singh A, Joubran J, Hazlewood A, Zhou J, McCartney J, Arumugam V, Decker C, Yang J, Young C, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu P (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A 106:18825–18830

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 108:18843–18848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vilardaga JP, Bunemann M, Krasel C, Castro M, Lohse MJ (2003) Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat Biotechnol 21:807–812

    Article  CAS  PubMed  Google Scholar 

  • Violin JD, De Wire SM, Yamashita D, Rominger DH, Nguyen L, Schiller K, Whalen EJ, Gowen M, Lark MW (2010) Selectively engaging beta-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 335:572–579

    Article  CAS  PubMed  Google Scholar 

  • von Zastrow M, Kobilka BK (1992) Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J Biol Chem 267:3530–3538

    Google Scholar 

  • Wager-Miller J, Mackie K (2016) Quantitation of plasma membrane (G protein-coupled) receptor trafficking in cultured cells. Methods Mol Biol 1412:255–266

    Article  CAS  PubMed  Google Scholar 

  • Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, Colombo C, Davies JC, De Boeck K, Flume PA, Konstan MW, McColley SA, McCoy K, McKone EF, Munck A, Ratjen F, Rowe SM, Waltz D, Boyle MP (2015) Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 373:220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther C, Ferguson SS (2013) Arrestins: role in the desensitization, sequestration, and vesicular trafficking of G protein-coupled receptors. Prog Mol Biol Transl Sci 118:93–113

    Article  CAS  PubMed  Google Scholar 

  • Wehbi VL, Stevenson HP, Feinstein TN, Calero G, Romero G, Vilardaga JP (2013) Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gbetagamma complex. Proc Natl Acad Sci U S A 110:1530–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilden U, Hall SW, Kuhn H (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci U S A 83:1174–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Tapia PH, Jarvik J, Waggoner AS, Sklar LA (2014) Real-time detection of protein trafficking with high-throughput flow cytometry (HTFC) and fluorogen-activating protein (FAP) base biosensor. Curr Protoc Cytom 67:9.43

    Google Scholar 

  • Wyse BD, Prior IA, Qian H, Morrow IC, Nixon S, Muncke C, Kurzchalia TV, Thomas WG, Parton RG, Hancock JF (2003) Caveolin interacts with the angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane. J Biol Chem 278:23738–23746

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Corneillie TM, Moore EG, Law GL, Butlin NG, Raymond KN (2011) Octadentate cages of Tb(III) 2-hydroxyisophthalamides: a new standard for luminescent lanthanide labels. J Am Chem Soc 133:19900–19910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Watson J, Chen M, Shen DR, Yarde M, Agler M, Burford N, Alt A, Jayachandra S, Cvijic ME, Zhang L, Dyckman A, Xie J, O’Connell J, Banks M, Weston A (2014) Integrating high-content analysis into a multiplexed screening approach to identify and characterize GPCR agonists. J Biomol Screen 19:1079–1089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge members of the Bräuner-Osborne lab and Dr. Maria Waldhoer for the helpful discussions. S.R.F. acknowledges funding from the Independent Research Fund Denmark | Medical Sciences, the Lundbeck Foundation, and the Augustinus Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Bräuner-Osborne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Foster, S.R., Bräuner-Osborne, H. (2017). Investigating Internalization and Intracellular Trafficking of GPCRs: New Techniques and Real-Time Experimental Approaches. In: Ulloa-Aguirre, A., Tao, YX. (eds) Targeting Trafficking in Drug Development. Handbook of Experimental Pharmacology, vol 245. Springer, Cham. https://doi.org/10.1007/164_2017_57

Download citation

Publish with us

Policies and ethics