Skip to main content

GABA Receptors and the Pharmacology of Sleep

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 253))

Abstract

Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2βγ2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αβδ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia.

This is a preview of subscription content, log in via an institution.

References

  • Abulafia R, Zalkind V, Devor M (2009) Cerebral activity during the anesthesia-like state induced by mesopontine microinjection of pentobarbital. J Neurosci 29:7053–7064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandre C, Dordal A, Aixendri R, Guzman A, Hamon M, Adrien J (2008) Sleep-stabilizing effects of E-6199, compared to zopiclone, zolpidem and THIP in mice. Sleep 31:259–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Behlke LM, Foster RA, Liu J, Benke D, Benham RS, Nathanson AJ, Yee BK, Zeilhofer HU, Engin E, Rudolph U (2016) A pharmacogenetic ‘restriction-of-function’ approach reveals evidence for anxiolytic-like actions mediated by alpha5-containing GABAA receptors in mice. Neuropsychopharmacology 41:2492–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ (2005) Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci 25:11513–11520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belujon P, Baufreton J, Grandoso L, Boue-Grabot E, Batten TF, Ugedo L, Garret M, Taupignon AI (2009) Inhibitory transmission in locus coeruleus neurons expressing GABAA receptor epsilon subunit has a number of unique properties. J Neurophysiol 102:2312–2325

    Article  CAS  PubMed  Google Scholar 

  • Bertisch SM, Herzig SJ, Winkelman JW, Buettner C (2014) National use of prescription medications for insomnia: NHANES 1999–2010. Sleep 37:343–349

    Article  PubMed  PubMed Central  Google Scholar 

  • Black SW, Morairty SR, Chen TM, Leung AK, Wisor JP, Yamanaka A, Kilduff TS (2014) GABAB agonism promotes sleep and reduces cataplexy in murine narcolepsy. J Neurosci 34:6485–6494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth JN 3rd, Behring M, Cantor RS, Colantonio LD, Davidson S, Donnelly JP, Johnson E, Jordan K, Singleton C, Xie F, McGwin G Jr (2016) Zolpidem use and motor vehicle collisions in older drivers. Sleep Med 20:98–102

    Article  PubMed  Google Scholar 

  • Brickley SG, Mody I (2012) Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron 73:23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M (2001) Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409:88–92

    Article  CAS  PubMed  Google Scholar 

  • Chatelle C, Thibaut A, Gosseries O, Bruno MA, Demertzi A, Bernard C, Hustinx R, Tshibanda L, Bahri MA, Laureys S (2014) Changes in cerebral metabolism in patients with a minimally conscious state responding to zolpidem. Front Hum Neurosci 8:917

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, Hormann N, Chang WC, Zhang Z, Do JP, Yao S, Krashes MJ, Tasic B, Cetin A, Zeng H, Knight ZA, Luo L, Dan Y (2017) Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coenen AM, van Luijtelaar EL (1991) Pharmacological dissociation of EEG and behavior: a basic problem in sleep-wake classification. Sleep 14:464–465

    CAS  PubMed  Google Scholar 

  • Connelly WM, Errington AC, Crunelli V (2013) Gamma-Hydroxybutyric acid (GHB) is not an agonist of extrasynaptic GABAA receptors. PLoS One 8:e79062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cope DW, Wulff P, Oberto A, Aller MI, Capogna M, Ferraguti F, Halbsguth C, Hoeger H, Jolin HE, Jones A, McKenzie AN, Ogris W, Poeltl A, Sinkkonen ST, Vekovischeva OY, Korpi ER, Sieghart W, Sigel E, Somogyi P, Wisden W (2004) Abolition of zolpidem sensitivity in mice with a point mutation in the GABAA receptor gamma2 subunit. Neuropharmacology 47:17–34

    Article  CAS  PubMed  Google Scholar 

  • Corteen NL, Cole TM, Sarna A, Sieghart W, Swinny JD (2011) Localization of GABA-A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. Eur J Neurosci 34:250–262

    Article  PubMed  Google Scholar 

  • Crestani F, Martin JR, Mohler H, Rudolph U (2000) Mechanism of action of the hypnotic zolpidem in vivo. Br J Pharmacol 131:1251–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijk DJ, James LM, Peters S, Walsh JK, Deacon S (2010) Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep. J Psychopharmacol 24:1613–1618

    Article  CAS  PubMed  Google Scholar 

  • Ferando I, Mody I (2015) In vitro gamma oscillations following partial and complete ablation of delta subunit-containing GABAA receptors from parvalbumin interneurons. Neuropharmacology 88:91–98

    Article  CAS  PubMed  Google Scholar 

  • Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9:370–386

    Article  CAS  PubMed  Google Scholar 

  • Franks NP (2015) Structural comparisons of ligand-gated ion channels in open, closed, and desensitized states identify a novel propofol-binding site on mammalian gamma-aminobutyric acid type A receptors. Anesthesiology 122:787–794

    Article  CAS  PubMed  Google Scholar 

  • Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367:607–614

    Article  CAS  PubMed  Google Scholar 

  • Frey DJ, Ortega JD, Wiseman C, Farley CT, Wright KP Jr (2011) Influence of zolpidem and sleep inertia on balance and cognition during nighttime awakening: a randomized placebo-controlled trial. J Am Geriatr Soc 59:73–81

    Article  PubMed  Google Scholar 

  • Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194

    Article  CAS  PubMed  Google Scholar 

  • Garcia PS, Kolesky SE, Jenkins A (2010) General anesthetic actions on GABA(A) receptors. Curr Neuropharmacol 8:2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann M, Bettler B (2012) Regulation of neuronal GABA(B) receptor functions by subunit composition. Nat Rev Neurosci 13:380–394

    Article  CAS  PubMed  Google Scholar 

  • Gompf HS, Mathai C, Fuller PM, Wood DA, Pedersen NP, Saper CB, Lu J (2010) Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. J Neurosci 30:14543–14551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottesmann C, Gandolfo G, Arnaud C, Gauthier P (1998) The intermediate stage and paradoxical sleep in the rat: influence of three generations of hypnotics. Eur J Neurosci 10:409–414

    Article  CAS  PubMed  Google Scholar 

  • Greenblatt DJ, Roth T (2012) Zolpidem for insomnia. Expert Opin Pharmacother 13:879–893

    Article  CAS  PubMed  Google Scholar 

  • Gunn BG, Cunningham L, Mitchell SG, Swinny JD, Lambert JJ, Belelli D (2015) GABAA receptor-acting neurosteroids: a role in the development and regulation of the stress response. Front Neuroendocrinol 36:28–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajak G, Hedner J, Eglin M, Loft H, Storustovu SI, Lutolf S, Lundahl J, Gaboxadol Study 99775 Group (2009) A 2-week efficacy and safety study of gaboxadol and zolpidem using electronic diaries in primary insomnia outpatients. Sleep Med 10:705–712

    Article  PubMed  Google Scholar 

  • Harrison NL, Simmonds MA (1984) Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 323:287–292

    Article  CAS  PubMed  Google Scholar 

  • Hellsten KS, Sinkkonen ST, Hyde TM, Kleinman JE, Sarkioja T, Maksimow A, Uusi-Oukari M, Korpi ER (2010) Human locus coeruleus neurons express the GABA(A) receptor gamma2 subunit gene and produce benzodiazepine binding. Neurosci Lett 477:77–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herb A, Wisden W, Luddens H, Puia G, Vicini S, Seeburg PH (1992) The third gamma subunit of the gamma-aminobutyric acid type A receptor family. Proc Natl Acad Sci U S A 89:1433–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herd MB, Belelli D, Lambert JJ (2007) Neurosteroid modulation of synaptic and extrasynaptic GABA(A) receptors. Pharmacol Ther 116:20–34

    Article  CAS  PubMed  Google Scholar 

  • Herrera CG, Cadavieco MC, Jego S, Ponomarenko A, Korotkova T, Adamantidis A (2016) Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 19:290–298

    Article  CAS  PubMed  Google Scholar 

  • Hogenkamp DJ, Tran MB, Yoshimura RF, Johnstone TB, Kanner R, Gee KW (2014) Pharmacological profile of a 17beta-heteroaryl-substituted neuroactive steroid. Psychopharmacology 231:3517–3524

    Article  CAS  PubMed  Google Scholar 

  • Houston CM, McGee TP, Mackenzie G, Troyano-Cuturi K, Rodriguez PM, Kutsarova E, Diamanti E, Hosie AM, Franks NP, Brickley SG (2012) Are extrasynaptic GABAA receptors important targets for sedative/hypnotic drugs? J Neurosci 32:3887–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu N, Jha SK, Coleman T, Frank MG (2009) Paradoxical effects of the hypnotic Zolpidem in the neonatal ferret. Behav Brain Res 201:233–236

    Article  CAS  PubMed  Google Scholar 

  • Jones BL, Henderson LP (2007) Trafficking and potential assembly patterns of epsilon-containing GABAA receptors. J Neurochem 103:1258–1271

    Article  CAS  PubMed  Google Scholar 

  • Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C (2016) 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 19:605–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaupmann K, Cryan JF, Wellendorph P, Mombereau C, Sansig G, Klebs K, Schmutz M, Froestl W, van der Putten H, Mosbacher J, Brauner-Osborne H, Waldmeier P, Bettler B (2003) Specific gamma-hydroxybutyrate-binding sites but loss of pharmacological effects of gamma-hydroxybutyrate in GABA(B)(1)-deficient mice. Eur J Neurosci 18:2722–2730

    Article  PubMed  Google Scholar 

  • Khom S, Baburin I, Timin EN, Hohaus A, Sieghart W, Hering S (2006) Pharmacological properties of GABAA receptors containing gamma1 subunits. Mol Pharmacol 69:640–649

    Article  CAS  PubMed  Google Scholar 

  • Kopp C, Rudolph U, Keist R, Tobler I (2003) Diazepam-induced changes on sleep and the EEG spectrum in mice: role of the alpha3-GABA(A) receptor subtype. Eur J Neurosci 17:2226–2230

    Article  CAS  PubMed  Google Scholar 

  • Kopp C, Rudolph U, Low K, Tobler I (2004a) Modulation of rhythmic brain activity by diazepam: GABA(A) receptor subtype and state specificity. Proc Natl Acad Sci U S A 101:3674–3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp C, Rudolph U, Tobler I (2004b) Sleep EEG changes after zolpidem in mice. Neuroreport 15:2299–2302

    Article  CAS  PubMed  Google Scholar 

  • Lan NC, Chen JS, Belelli D, Pritchett DB, Seeburg PH, Gee KW (1990) A steroid recognition site is functionally coupled to an expressed GABA(A)-benzodiazepine receptor. Eur J Pharmacol 188:403–406

    Article  CAS  PubMed  Google Scholar 

  • Lancel M, Langebartels A (2000) Gamma-aminobutyric Acid(A) (GABA(A)) agonist 4,5,6, 7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol persistently increases sleep maintenance and intensity during chronic administration to rats. J Pharmacol Exp Ther 293:1084–1090

    CAS  PubMed  Google Scholar 

  • Lancel M, Steiger A (1999) Sleep and its modulation by drugs that affect GABA(A) receptor function. Angew Chem Int Ed Engl 38:2852–2864

    Article  CAS  PubMed  Google Scholar 

  • Lancel M, Faulhaber J, Holsboer F, Rupprecht R (1999) The GABA(A) receptor antagonist picrotoxin attenuates most sleep changes induced by progesterone. Psychopharmacology 141:213–219

    Article  CAS  PubMed  Google Scholar 

  • Landolt HP, Finelli LA, Roth C, Buck A, Achermann P, Borbely AA (2000) Zolpidem and sleep deprivation: different effect on EEG power spectra. J Sleep Res 9:175–183

    Article  CAS  PubMed  Google Scholar 

  • Levitan ES, Schofield PR, Burt DR, Rhee LM, Wisden W, Kohler M, Fujita N, Rodriguez HF, Stephenson A, Darlison MG et al (1988) Structural and functional basis for GABAA receptor heterogeneity. Nature 335:76–79

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Sakai K, Vanni-Mercier G, Jouvet M (1989) A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 479:225–240

    Article  CAS  PubMed  Google Scholar 

  • Low K, Crestani F, Keist R, Benke D, Brunig I, Benson JA, Fritschy JM, Rulicke T, Bluethmann H, Mohler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134

    Article  CAS  PubMed  Google Scholar 

  • Luddens H, Pritchett DB, Kohler M, Killisch I, Keinanen K, Monyer H, Sprengel R, Seeburg PH (1990) Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature 346:648–651

    Article  CAS  PubMed  Google Scholar 

  • Lundahl J, Staner L, Staner C, Loft H, Deacon S (2007) Short-term treatment with gaboxadol improves sleep maintenance and enhances slow wave sleep in adult patients with primary insomnia. Psychopharmacology 195:139–146

    Article  CAS  PubMed  Google Scholar 

  • Lundahl J, Deacon S, Maurice D, Staner L (2012) EEG spectral power density profiles during NREM sleep for gaboxadol and zolpidem in patients with primary insomnia. J Psychopharmacol 26:1081–1087

    Article  CAS  PubMed  Google Scholar 

  • Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007

    Article  CAS  PubMed  Google Scholar 

  • Matsuki T, Nomiyama M, Takahira H, Hirashima N, Kunita S, Takahashi S, Yagami K, Kilduff TS, Bettler B, Yanagisawa M, Sakurai T (2009) Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci U S A 106:4459–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May AC, Fleischer W, Kletke O, Haas HL, Sergeeva OA (2013) Benzodiazepine-site pharmacology on GABAA receptors in histaminergic neurons. Br J Pharmacol 170:222–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nat Neurosci 3:587–592

    Article  CAS  PubMed  Google Scholar 

  • Mignot E (2013) Physiology. The perfect hypnotic? Science 340:36–38

    Article  CAS  PubMed  Google Scholar 

  • Milenkovic I, Vasiljevic M, Maurer D, Hoger H, Klausberger T, Sieghart W (2013) The parvalbumin-positive interneurons in the mouse dentate gyrus express GABAA receptor subunits alpha1, beta2, and delta along their extrasynaptic cell membrane. Neuroscience 254:80–96

    Article  CAS  PubMed  Google Scholar 

  • Miller PS, Aricescu AR (2014) Crystal structure of a human GABAA receptor. Nature 512:270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minert A, Devor M (2016) Brainstem node for loss of consciousness due to GABA(A) receptor-active anesthetics. Exp Neurol 275(Pt 1):38–45

    Article  CAS  PubMed  Google Scholar 

  • Mohler H (2015) The legacy of the benzodiazepine receptor: from flumazenil to enhancing cognition in Down syndrome and social interaction in autism. Adv Pharmacol 72:1–36

    Article  PubMed  CAS  Google Scholar 

  • Moragues N, Ciofi P, Tramu G, Garret M (2002) Localisation of GABA(A) receptor epsilon-subunit in cholinergic and aminergic neurones and evidence for co-distribution with the theta-subunit in rat brain. Neuroscience 111:657–669

    Article  CAS  PubMed  Google Scholar 

  • Morris H (2013) Gaboxadol. Harper’s Magazine, New York. August issue: https://harpers.org/archive/2013/08/gaboxadol/3/

  • Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M (2002) The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 5:979–984

    Article  CAS  PubMed  Google Scholar 

  • Nitz D, Siegel JM (1996) GABA release in posterior hypothalamus across sleep-wake cycle. Am J Phys 271:R1707–R1712

    CAS  Google Scholar 

  • Nutt DJ, Stahl SM (2010) Searching for perfect sleep: the continuing evolution of GABAA receptor modulators as hypnotics. J Psychopharmacol 24:1601–1612

    Article  CAS  PubMed  Google Scholar 

  • Ogris W, Poltl A, Hauer B, Ernst M, Oberto A, Wulff P, Hoger H, Wisden W, Sieghart W (2004) Affinity of various benzodiazepine site ligands in mice with a point mutation in the GABA(A) receptor gamma2 subunit. Biochem Pharmacol 68:1621–1629

    Article  CAS  PubMed  Google Scholar 

  • Olsen RW (2015) Allosteric ligands and their binding sites define gamma-aminobutyric acid (GABA) type A receptor subtypes. Adv Pharmacol 73:167–202

    Article  CAS  PubMed  Google Scholar 

  • Pin JP, Bettler B (2016) Organization and functions of mGlu and GABAB receptor complexes. Nature 540:60–68

    Article  CAS  PubMed  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850

    Article  CAS  PubMed  Google Scholar 

  • Pritchett DB, Seeburg PH (1990) Gamma-aminobutyric acidA receptor alpha 5-subunit creates novel type II benzodiazepine receptor pharmacology. J Neurochem 54:1802–1804

    Article  CAS  PubMed  Google Scholar 

  • Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585

    Article  CAS  PubMed  Google Scholar 

  • Puthenkalam R, Hieckel M, Simeone X, Suwattanasophon C, Feldbauer RV, Ecker GF, Ernst M (2016) Structural studies of GABAA receptor binding sites: which experimental structure tells us what? Front Mol Neurosci 9:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu MH, Chen MC, Lu J (2015) Cortical neuronal activity does not regulate sleep homeostasis. Neuroscience 297:211–218

    Article  CAS  PubMed  Google Scholar 

  • Ralvenius WT, Benke D, Acuna MA, Rudolph U, Zeilhofer HU (2015) Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype. Nat Commun 6:6803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall LO (1961) Pharmacology of chlordiazepoxide (Librium). Dis Nerv Syst 22(Suppl 7):7–15

    CAS  PubMed  Google Scholar 

  • Ranna M, Sinkkonen ST, Moykkynen T, Uusi-Oukari M, Korpi ER (2006) Impact of epsilon and theta subunits on pharmacological properties of alpha3beta1 GABAA receptors expressed in Xenopus oocytes. BMC Pharmacol 6:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reynolds DS, Rosahl TW, Cirone J, O’Meara GF, Haythornthwaite A, Newman RJ, Myers J, Sur C, Howell O, Rutter AR, Atack J, Macaulay AJ, Hadingham KL, Hutson PH, Belelli D, Lambert JJ, Dawson GR, McKernan R, Whiting PJ, Wafford KA (2003) Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 23:8608–8617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth T, Lines C, Vandormael K, Ceesay P, Anderson D, Snavely D (2010) Effect of gaboxadol on patient-reported measures of sleep and waking function in patients with Primary Insomnia: results from two randomized, controlled, 3-month studies. J Clin Sleep Med 6:30–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudolph U, Crestani F, Benke D, Brunig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Mohler H (1999) Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401:796–800

    Article  CAS  PubMed  Google Scholar 

  • Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA et al (1987) Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family. Nature 328:221–227

    Article  CAS  PubMed  Google Scholar 

  • Schroeck JL, Ford J, Conway EL, Kurtzhalts KE, Gee ME, Vollmer KA, Mergenhagen KA (2016) Review of safety and efficacy of sleep medicines in older adults. Clin Ther 38:2340–2372

    Article  CAS  PubMed  Google Scholar 

  • Seeburg PH, Wisden W, Verdoorn TA, Pritchett DB, Werner P, Herb A, Luddens H, Sprengel R, Sakmann B (1990) The GABAA receptor family: molecular and functional diversity. Cold Spring Harb Symp Quant Biol 55:29–40

    Article  CAS  PubMed  Google Scholar 

  • Seibt J, Aton SJ, Jha SK, Coleman T, Dumoulin MC, Frank MG (2008) The non-benzodiazepine hypnotic zolpidem impairs sleep-dependent cortical plasticity. Sleep 31:1381–1391

    PubMed  PubMed Central  Google Scholar 

  • Seifi M, Brown JF, Mills J, Bhandari P, Belelli D, Lambert JJ, Rudolph U, Swinny JD (2014) Molecular and functional diversity of GABA-A receptors in the enteric nervous system of the mouse colon. J Neurosci 34:10361–10378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sergeeva OA, Andreeva N, Garret M, Scherer A, Haas HL (2005) Pharmacological properties of GABAA receptors in rat hypothalamic neurons expressing the epsilon-subunit. J Neurosci 25:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivers BD, Killisch I, Sprengel R, Sontheimer H, Kohler M, Schofield PR, Seeburg PH (1989) Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3:327–337

    Article  CAS  PubMed  Google Scholar 

  • Sieghart W (2015) Allosteric modulation of GABAA receptors via multiple drug-binding sites. Adv Pharmacol 72:53–96

    Article  CAS  PubMed  Google Scholar 

  • Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABA(A) receptors. J Biol Chem 287:40224–40231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinkkonen ST, Hanna MC, Kirkness EF, Korpi ER (2000) GABA(A) receptor epsilon and theta subunits display unusual structural variation between species and are enriched in the rat locus ceruleus. J Neurosci 20:3588–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thonnard M, Gosseries O, Demertzi A, Lugo Z, Vanhaudenhuyse A, Bruno MA, Chatelle C, Thibaut A, Charland-Verville V, Habbal D, Schnakers C, Laureys S (2013) Effect of zolpidem in chronic disorders of consciousness: a prospective open-label study. Funct Neurol 28:259–264

    PubMed  Google Scholar 

  • Tobler I, Kopp C, Deboer T, Rudolph U (2001) Diazepam-induced changes in sleep: role of the alpha 1 GABA(A) receptor subtype. Proc Natl Acad Sci U S A 98:6464–6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toossi H, Del Cid-Pellitero E, Jones BE (2016) GABA receptors on orexin and melanin-concentrating hormone neurons are differentially homeostatically regulated following sleep deprivation. eNeuro 3. https://doi.org/10.1523/ENEURO.0077-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Uygun DS, Ye Z, Zecharia AY, Harding EC, Yu X, Yustos R, Vyssotski AL, Brickley SG, Franks NP, Wisden W (2016) Bottom-up versus top-down induction of sleep by zolpidem acting on histaminergic and neocortex neurons. J Neurosci 36:11171–11184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venner A, Anaclet C, Broadhurst RY, Saper CB, Fuller PM (2016) A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus. Curr Biol 26:2137–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vienne J, Bettler B, Franken P, Tafti M (2010) Differential effects of GABAB receptor subtypes, {gamma}-hydroxybutyric Acid, and Baclofen on EEG activity and sleep regulation. J Neurosci 30:14194–14204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vienne J, Lecciso G, Constantinescu I, Schwartz S, Franken P, Heinzer R, Tafti M (2012) Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory. Sleep 35:1071–1083

    Article  PubMed  PubMed Central  Google Scholar 

  • Vyazovskiy VV, Kopp C, Bosch G, Tobler I (2005) The GABAA receptor agonist THIP alters the EEG in waking and sleep of mice. Neuropharmacology 48:617–626

    Article  CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Tobler I, Winsky-Sommerer R (2007) Alteration of behavior in mice by muscimol is associated with regional electroencephalogram synchronization. Neuroscience 147:833–841

    Article  CAS  PubMed  Google Scholar 

  • Wafford KA, Ebert B (2006) Gaboxadol – a new awakening in sleep. Curr Opin Pharmacol 6:30–36

    Article  CAS  PubMed  Google Scholar 

  • Wafford KA, Ebert B (2008) Emerging anti-insomnia drugs: tackling sleeplessness and the quality of wake time. Nat Rev Drug Discov 7:530–540

    Article  CAS  PubMed  Google Scholar 

  • Wafford KA, van Niel MB, Ma QP, Horridge E, Herd MB, Peden DR, Belelli D, Lambert JJ (2009) Novel compounds selectively enhance delta subunit containing GABA A receptors and increase tonic currents in thalamus. Neuropharmacology 56:182–189

    Article  CAS  PubMed  Google Scholar 

  • Wieland HA, Luddens H, Seeburg PH (1992) A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem 267:1426–1429

    Article  CAS  PubMed  Google Scholar 

  • Williams ST, Conte MM, Goldfine AM, Noirhomme Q, Gosseries O, Thonnard M, Beattie B, Hersh J, Katz DI, Victor JD, Laureys S, Schiff ND (2013) Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury. elife 2:e01157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winsky-Sommerer R (2009) Role of GABAA receptors in the physiology and pharmacology of sleep. Eur J Neurosci 29:1779–1794

    Article  PubMed  Google Scholar 

  • Winsky-Sommerer R, Vyazovskiy VV, Homanics GE, Tobler I (2007) The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABA(A)delta-subunit-containing receptors. Eur J Neurosci 25:1893–1899

    Article  PubMed  Google Scholar 

  • Winsky-Sommerer R, Knapman A, Fedele DE, Schofield CM, Vyazovskiy VV, Rudolph U, Huguenard JR, Fritschy JM, Tobler I (2008) Normal sleep homeostasis and lack of epilepsy phenotype in GABA A receptor alpha3 subunit-knockout mice. Neuroscience 154:595–605

    Article  CAS  PubMed  Google Scholar 

  • Wisden W, Morris BJ, Darlison MG, Hunt SP, Barnard EA (1988) Distinct GABAA receptor alpha subunit mRNAs show differential patterns of expression in bovine brain. Neuron 1:937–947

    Article  CAS  PubMed  Google Scholar 

  • Wisden W, Herb A, Wieland H, Keinanen K, Luddens H, Seeburg PH (1991) Cloning, pharmacological characteristics and expression pattern of the rat GABAA receptor alpha 4 subunit. FEBS Lett 289:227–230

    Article  CAS  PubMed  Google Scholar 

  • Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12:1040–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisor JP, Morairty SR, Huynh NT, Steininger TL, Kilduff TS (2006) Gene expression in the rat cerebral cortex: comparison of recovery sleep and hypnotic-induced sleep. Neuroscience 141:371–378

    Article  CAS  PubMed  Google Scholar 

  • Wulff P, Goetz T, Leppa E, Linden AM, Renzi M, Swinny JD, Vekovischeva OY, Sieghart W, Somogyi P, Korpi ER, Farrant M, Wisden W (2007) From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat Neurosci 10:923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip GM, Chen ZW, Edge CJ, Smith EH, Dickinson R, Hohenester E, Townsend RR, Fuchs K, Sieghart W, Evers AS, Franks NP (2013) A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat Chem Biol 9:715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecharia AY, Yu X, Gotz T, Ye Z, Carr DR, Wulff P, Bettler B, Vyssotski AL, Brickley SG, Franks NP, Wisden W (2012) GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J Neurosci 32:13062–13075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ferretti V, Guntan I, Moro A, Steinberg EA, Ye Z, Zecharia AY, Yu X, Vyssotski AL, Brickley SG, Yustos R, Pillidge ZE, Harding EC, Wisden W, Franks NP (2015) Neuronal ensembles sufficient for recovery sleep and the sedative actions of alpha2 adrenergic agonists. Nat Neurosci 18:553–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors declare no financial conflict of interest. Work in the Franks and Wisden laboratory is funded by the Wellcome Trust (107839/Z/15/Z, N.P.F. and 107841/Z/15/Z, W.W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wisden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wisden, W., Yu, X., Franks, N.P. (2017). GABA Receptors and the Pharmacology of Sleep. In: Landolt, HP., Dijk, DJ. (eds) Sleep-Wake Neurobiology and Pharmacology . Handbook of Experimental Pharmacology, vol 253. Springer, Cham. https://doi.org/10.1007/164_2017_56

Download citation

Publish with us

Policies and ethics