Skip to main content

Effects of Benzothiazolamines on Voltage-Gated Sodium Channels

  • Chapter
  • First Online:
Voltage-gated Sodium Channels: Structure, Function and Channelopathies

Abstract

Benzothiazole is a versatile fused heterocycle that aroused much interest in drug discovery as anticonvulsant, neuroprotective, analgesic, anti-inflammatory, antimicrobial, and anticancer. Two benzothiazolamines, riluzole and lubeluzole, are known blockers of voltage-gated sodium (Nav) channels. Riluzole is clinically used as a neuroprotectant in amyotrophic lateral sclerosis. Inhibition of Nav channels by riluzole is voltage-dependent due to preferential binding to inactivated sodium channels. Yet the drug exerts little use-dependent block, probably because it lacks protonable amine. One important property is riluzole ability to inhibit persistent Na+ currents, which likely contributes to its neuroprotective activity. Lubeluzole showed promising neuroprotective effects in animal stroke models, but failed to show benefits in acute ischemic stroke in humans. One important concern is its propensity to prolong the cardiac QT interval, due to hERG K+ channel block. Lubeluzole very potently inhibits Nav channels in a voltage- and use-dependent manner, due to its great preferential affinity for inactivated channels and the presence of a protonable amine group. Patch-clamp experiments suggest that the binding sites of both drugs overlap the local anesthetic receptor within the ion-conducting pathway. Riluzole and lubeluzole displayed very potent antimyotonic activity in a rat model of myotonia, a pathological skeletal muscle condition characterized by high-frequency runs of action potentials. Such results well support the repurposing of riluzole as an antimyotonic drug, allowing the launch of a pilot study in myotonic patients. Riluzole, lubeluzole, and new Nav channel blockers built on the benzothiazolamine scaffold will certainly continue to be investigated for possible clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahern CA, Eastwood AL, Dougherty DA et al (2008) Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels. Circ Res 102(1):86–94

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer C, Schwindt PC, Crill WE (1993) Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. J Neurosci 13:660–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong MJ, Miyasaki JM, American Academy of Neurology (2012) Evidence-based guideline: pharmacologic treatment of chorea in Huntington disease: report of the guideline development subcommittee of the American Academy of Neurology. Neurology 79(6):597–603

    Article  PubMed  PubMed Central  Google Scholar 

  • Aronowski J, Strong R, Grotta JC (1996) Treatment of experimental focal ischemia in rats with lubeluzole. Neuropharmacology 35(6):689–693

    Article  CAS  PubMed  Google Scholar 

  • Ashton D, Willems R, Wynants J et al (1997) Altered Na(+)-channel function as an in vitro model of the ischemic penumbra: action of lubeluzole and other neuroprotective drugs. Brain Res 745(1-2):210–221

    Article  CAS  PubMed  Google Scholar 

  • Bagal SK, Marron BE, Owen RM et al (2015) Voltage gated sodium channels as drug discovery targets. Channels (Austin) 9(6):360–366

    Article  Google Scholar 

  • Bellingham MC (2011) A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 17(1):4–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran-Parrazal L, Charles A (2003) Riluzole inhibits spontaneous Ca2+ signaling in neuroendocrine cells by activation of K+ channels and inhibition of Na+ channels. Br J Pharmacol 140(5):881–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett PB, Yazawa K, Makita N et al (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376(6542):683–685

    Article  CAS  PubMed  Google Scholar 

  • Benoit E, Escande D (1991) Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre. Pflugers Arch 419(6):603–609

    Article  CAS  PubMed  Google Scholar 

  • Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Eng J Med 330:585–591

    Article  CAS  Google Scholar 

  • Bensimon G, Ludolph A, Agid Y et al (2009) Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132(Pt 1):156–171

    Article  PubMed  Google Scholar 

  • Blackburn-Munro G, Ibsen N, Erichsen HK (2002) A comparison of the anti-nociceptive effects of voltage-activated Na+ channel blockers in the formalin test. Eur J Pharmacol 445(3):231–238

    Article  CAS  PubMed  Google Scholar 

  • Braz CA, Borges V, Ferraz HB (2004) Effect of riluzole on dyskinesia and duration of the on state in Parkinson disease patients: a double-blind, placebo-controlled pilot study. Clin Neuropharmacol 27(1):25–29

    Article  CAS  PubMed  Google Scholar 

  • Bruno C, Cavalluzzi MM, Rusciano MR et al (2016) The chemosensitizing agent lubeluzole binds calmodulin and inhibits Ca(2+)/calmodulin-dependent kinase II. Eur J Med Chem 116:36–45

    Article  CAS  PubMed  Google Scholar 

  • Cannon SC, Brown RH Jr, Corey DP (1993) Theoretical reconstruction of myotonia and paralysis caused by incomplete inactivation of sodium channels. Biophys J 65(1):270–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao YJ, Dreixler JC, Couey JJ et al (2002) Modulation of recombinant and native neuronal SK channels by the neuroprotective drug riluzole. Eur J Pharmacol 449:47–54

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2012) Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 590(11):2577–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalluzzi MM, Viale M, Bruno C et al (2013) A convenient synthesis of lubeluzole and its enantiomer: evaluation as chemosensitizing agents on human ovarian adenocarcinoma and lung carcinoma cells. Bioorg Med Chem Lett 23(17):4820–4823

    Article  CAS  PubMed  Google Scholar 

  • Coleman N, Nguyen HM, Cao Z et al (2015) The riluzole derivative 2-amino-6-trifluoromethylthio-benzothiazole (SKA-19), a mixed KCa2 activator and NaV blocker, is a potent novel anticonvulsant. Neurotherapeutics 12(1):234–249

    Article  CAS  PubMed  Google Scholar 

  • Culmsee C, Junker V, Wolz P et al (1998) Lubeluzole protects hippocampal neurons from excitotoxicity in vitro and reduces brain damage caused by ischemia. Eur J Pharmacol 342(2-3):193–201

    Article  CAS  PubMed  Google Scholar 

  • De Bellis M, Carbonara R, Roussel J et al (2017) Increased sodium channel use-dependent inhibition by a new potent analogue of tocainide greatly enhances in vivo antimyotonic activity. Neuropharmacology 113:206–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Luca A, Talon S, De Bellis M et al (2003a) Inhibition of skeletal muscle sodium currents by mexiletine analogues: specific hydrophobic interactions rather than lipophilia per se account for drug therapeutic profile. Naunyn Schmiedeberg’s Arch Pharmacol 367(3):318–327

    Article  CAS  Google Scholar 

  • De Luca A, Talon S, De Bellis M et al (2003b) Optimal requirements for high affinity and use-dependent block of skeletal muscle sodium channel by N-benzyl analogs of tocainide-like compounds. Mol Pharmacol 64(4):932–945

    Article  PubMed  Google Scholar 

  • De Ryck M, Keersmaekers R, Duytschaever H et al (1996) Lubeluzole protects sensorimotor function and reduces infarct size in a photochemical stroke model in rats. J Pharmacol Exp Ther 279(2):748–758

    PubMed  Google Scholar 

  • Deflorio C, Onesti E, Lauro C et al (2014) Partial block by riluzole of muscle sodium channels in myotubes from amyotrophic lateral sclerosis patients. Neurol Res Int 2014:946073

    Article  PubMed  PubMed Central  Google Scholar 

  • Desaphy JF, Pierno S, De Luca A et al (2003) Different ability of clenbuterol and salbutamol to block sodium channels predicts their therapeutic use in muscle excitability disorders. Mol Pharmacol 63(3):659–670

    Article  CAS  PubMed  Google Scholar 

  • Desaphy JF, Dipalma A, De Bellis M et al (2009) Involvement of voltage-gated sodium channels blockade in the analgesic effects of orphenadrine. Pain 142(3):225–235

    Article  CAS  PubMed  Google Scholar 

  • Desaphy JF, Dipalma A, Costanza T et al (2010) Molecular determinants of state-dependent block of voltage-gated sodium channels by pilsicainide. Br J Pharmacol 160(6):1521–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desaphy JF, Dipalma A, Costanza T et al (2012) Molecular insights into the local anesthetic receptor within voltage-gated sodium channels using hydroxylated analogs of mexiletine. Front Pharmacol 3:17. https://doi.org/10.3389/fphar.2012.00017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desaphy JF, Carbonara R, Costanza T et al (2013a) Molecular dissection of lubeluzole use-dependent block of voltage-gated sodium channels discloses new therapeutic potentials. Mol Pharmacol 83(2):406–415

    Article  CAS  PubMed  Google Scholar 

  • Desaphy JF, Costanza T, Carbonara R et al (2013b) In vivo evaluation of antimyotonic efficacy of β-adrenergic drugs in a rat model of myotonia. Neuropharmacology 65:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desaphy JF, Modoni A, Lomonaco M et al (2013c) Dramatic improvement of myotonia permanens with flecainide: a two-case report of a possible bench-to-bedside pharmacogenetics strategy. Eur J Clin Pharmacol 69(4):1037–1039

    Article  PubMed  Google Scholar 

  • Desaphy JF, Carbonara R, Costanza T et al (2014) Preclinical evaluation of marketed sodium channel blockers in a rat model of myotonia discloses promising antimyotonic drugs. Exp Neurol 255:96–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desaphy JF, Carbonara R, D’Amico A et al (2016) Translational approach to address therapy in myotonia permanens due to a new SCN4A mutation. Neurology 86(22):2100–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diener HC, Hacke W, Hennerici M et al (1996) Lubeluzole in acute ischemic stroke. A double-blind, placebo-controlled phase II trial. Lubeluzole International Study Group. Stroke 27(1):76–81

    Article  CAS  PubMed  Google Scholar 

  • Domino EF, Unna KR, Kerwin J (1952) Pharmacological properties of benzazoles. I. Relationship between structure and paralyzing action. J Pharmacol Exp Ther 105(4):486–497

    PubMed  CAS  Google Scholar 

  • Galer BS, Twilling LL, Harle J et al (2000) Lack of efficacy of riluzole in the treatment of peripheral neuropathic pain conditions. Neurology 55(7):971–975

    Article  CAS  PubMed  Google Scholar 

  • Gandolfo C, Sandercock P, Conti M (2002) Lubeluzole for acute ischaemic stroke. Cochrane Database Syst Rev 1:CD001924

    Google Scholar 

  • Gualdani R, Cavalluzzi MM, Tadini-Buoninsegni F et al (2015) Insights on molecular determinants of hERG K+ channel inhibition design, synthesis, and biological evaluation of lubeluzole derivatives. Biophys J 108(2):582a. (Abstract)

    Article  Google Scholar 

  • Hammer NA, Lillesø J, Pedersen JL et al (1999) Effect of riluzole on acute pain and hyperalgesia in humans. Br J Anaesth 82(5):718–722

    Article  CAS  PubMed  Google Scholar 

  • Haseldonckx M, Van Reempts J, Van de Ven M et al (1997) Protection with lubeluzole against delayed ischemic brain damage in rats. A quantitative histopathologic study. Stroke 28(2):428–432

    Article  CAS  PubMed  Google Scholar 

  • Hays SJ, Rice MJ, Ortwine DF et al (1994) Substituted 2-benzothiazolamines as sodium flux inhibitors: quantitative structure-activity relationships and anticonvulsant activity. J Pharm Sci 83(10):1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Hebert T, Drapeau P, Pradier L et al (1994) Block of the rat brain IIA sodium channel alpha subunit by the neuroprotective drug riluzole. Mol Pharmacol 45(5):1055–1060

    PubMed  CAS  Google Scholar 

  • Hernández-Guijo JM, Gandía L, de Pascual R et al (1997) Differential effects of the neuroprotectant lubeluzole on bovine and mouse chromaffin cell calcium channel subtypes. Br J Pharmacol 122(2):275–285

    Article  PubMed  PubMed Central  Google Scholar 

  • Herron J, Lee P, Pesco-Koplowitz L et al (1998) Determination of the dose proportionality of single intravenous doses (5, 10, and 15 mg) of lubeluzole in healthy volunteers. Clin Ther 20(4):682–690

    Article  CAS  PubMed  Google Scholar 

  • Hille B (1977) Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69:497–515

    Article  CAS  PubMed  Google Scholar 

  • Hondeghem LM, Katzung BG (1977) Time- and voltage-dependent interaction of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta 472:373–398

    Article  CAS  PubMed  Google Scholar 

  • Hubert JP, Delumeau JC, Glowinski J et al (1994) Antagonism by riluzole of entry of calcium evoked by NMDA and veratridine in rat cultured granule cells: evidence for a dual mechanism of action. Br J Pharmacol 113(1):261–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huntington Study Group (2003) Dosage effects of riluzole in Huntington’s disease: a multicenter placebo-controlled study. Neurology 61(11):1551–1556

    Article  Google Scholar 

  • Imbrici P, Liantonio A, Camerino GM et al (2016) Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery. Front Pharmacol 7:121. https://doi.org/10.3389/fphar.2016.00121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jankovic J, Hunter C (2002) A double-blind, placebo-controlled and longitudinal study of riluzole in early Parkinson’s disease. Parkinsonism Relat Disord 8(4):271–276

    Article  CAS  PubMed  Google Scholar 

  • Jimonet P, Audiau F, Barreau M et al (1999) Riluzole series. Synthesis and in vivo “antiglutamate” activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines. J Med Chem 42(15):2828–2843

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Syed MA, Mohammed SM (2015) Therapeutic potential of benzothiazoles: a patent review (2010–2014). Expert Opin Ther Pat 25(3):335–349

    Article  CAS  PubMed  Google Scholar 

  • Kononenko NI, Shao LR, Dudek FE (2004) Riluzole-sensitive slowly inactivating sodium current in rat suprachiasmatic nucleus neurons. J Neurophysiol 91(2):710–718

    Article  CAS  PubMed  Google Scholar 

  • Kuo JJ, Siddique T, Fu R et al (2005) Increased persistent Na(+) current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J Physiol 563:843–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacomblez L, Bensimon G, Leigh PN et al (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group II. Lancet 347:1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Lamas JA, Romero M, Reboreda A et al (2009) A riluzole- and valproate-sensitive persistent sodium current contributes to the resting membrane potential and increases the excitability of sympathetic neurones. Pflugers Arch 458(3):589–599

    Article  CAS  PubMed  Google Scholar 

  • Landwehrmeyer GB, Dubois B, de Yébenes JG et al (2007) Riluzole in Huntington’s disease: a 3-year, randomized controlled study. Ann Neurol 62(3):262–272

    Article  CAS  PubMed  Google Scholar 

  • Le Grand B, Dordain-Maffre M, John GW (2000) Lubeluzole-induced prolongation of cardiac action potential in rabbit Purkinje fibres. Fundam Clin Pharmacol 14(2):159–162

    Article  PubMed  Google Scholar 

  • Le Grand B, Talmant JM, Rieu JP et al (2003) Study of the interaction of lubeluzole with cardiac sodium channels. J Cardiovasc Pharmacol 42(5):581–587

    Article  PubMed  Google Scholar 

  • Lesage AS, Peeters L, Leysen JE (1996) Lubeluzole, a novel long-term neuroprotectant, inhibits the glutamate-activated nitric oxide synthase pathway. J Pharmacol Exp Ther 279(2):759–766

    PubMed  CAS  Google Scholar 

  • Lo Monaco M, D’Amico A, Luigetti M et al (2015) Effect of mexiletine on transitory depression of compound motor action potential in recessive myotonia congenita. Clin Neurophysiol 126(2):399–403

    Article  PubMed  Google Scholar 

  • Lopez-Santiago LF, Yuan Y, Wagnon JL et al (2017) Neuronal hyperexcitability in a mouse model of SCN8A epileptic encephalopathy. Proc Natl Acad Sci U S A 114(9):2383–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiese K, TenBroeke M, Kue I (1997) Neuroprotection of lubeluzole is mediated through the signal transduction pathways of nitric oxide. J Neurochem 68(2):710–714

    Article  CAS  PubMed  Google Scholar 

  • Mancini A, Chelini A, Di Capua A et al (2017) Synthesis and biological evaluation of a new class of benzothiazines as neuroprotective agents. Eur J Med Chem 126:614–630

    Article  CAS  PubMed  Google Scholar 

  • Marrannes R, De Prins E, Clincke G (1998) Influence of lubeluzole on voltage-sensitive Ca2+ channels in isolated rat neurons. J Pharmacol Exp Ther 286(1):201–214

    PubMed  CAS  Google Scholar 

  • Mathew SJ, Gueorguieva R, Brandt C et al (2017) A randomized, double-blind, placebo-controlled, sequential parallel comparison design trial of adjunctive riluzole for treatment-resistant major depressive disorder. Neuropsychopharmacology. https://doi.org/10.1038/npp.2017.106. [Epub ahead of print]

  • Mishra SP, Shukla SK, Pandey BL (2014) A preliminary evaluation of comparative effectiveness of riluzole in therapeutic regimen for irritable bowel syndrome. Asian Pac J Trop Biomed 4(Suppl 1):S335–S340

    Article  PubMed  PubMed Central  Google Scholar 

  • Muir KW, Lees KR (2003) Excitatory amino acid antagonists for acute stroke. Cochrane Database Syst Rev 3:CD001244

    Google Scholar 

  • Nagoshi N, Nakashima H, Fehlings MG (2015) Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Molecules 20:7775–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh KM, Hwang JY, Shin HC et al (2000) A novel neuroprotective mechanism of riluzole: direct inhibition of protein kinase C. Neurobiol Dis 7(4):375–383

    Article  CAS  PubMed  Google Scholar 

  • O’Neill MJ, Bath CP, Dell CP et al (1997) Effects of Ca2+ and Na+ channel inhibitors in vitro and in global cerebral ischaemia in vivo. Eur J Pharmacol 332:121–131

    Article  PubMed  Google Scholar 

  • Osikowska-Evers BA, Wilhelm D, Nebel U et al (1995) The effects of the novel neuroprotective compound lubeluzole on sodium current and veratridine-induced sodium load in rat brain neurons and synaptosomes. J Cereb Blood Flow Metab 15:S380. (Abstract)

    Google Scholar 

  • Park LT, Lener MS, Hopkins M et al (2017) A double-blind, placebo-controlled, pilot study of riluzole monotherapy for acute bipolar depression. J Clin Psychopharmacol 37(3):355–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieri M, Carunchio I, Curcio L et al (2009) Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis. Exp Neurol 215(2):368–379

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale DS, McPhee JC, Scheuer T et al (1994) Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 265(5179):1724–1728

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale DS, McPhee JC, Scheuer T et al (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 93(17):9270–9275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristori G, Romano S, Visconti A et al (2010) Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 74(10):839–845

    Article  CAS  PubMed  Google Scholar 

  • Romano S, Coarelli G, Marcotulli C et al (2015) Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 14(10):985–991

    Article  CAS  PubMed  Google Scholar 

  • Russman BS, Iannaccone ST, Samaha FJ (2003) A phase 1 trial of riluzole in spinal muscular atrophy. Arch Neurol 60(11):1601–1603

    Article  PubMed  Google Scholar 

  • Salardini E, Zeinoddini A, Mohammadinejad P et al (2016) Riluzole combination therapy for moderate-to-severe major depressive disorder: a randomized, double-blind, placebo-controlled trial. J Psychiatr Res 75:24–30

    Article  PubMed  Google Scholar 

  • Scheller DK, De Ryck M, Kolb J et al (1997) Lubeluzole blocks increases in extracellular glutamate and taurine in the peri-infarct zone in rats. Eur J Pharmacol 338(3):243–251

    Article  CAS  PubMed  Google Scholar 

  • Schuster JE, Fu R, Siddique T et al (2012) Effect of prolonged riluzole exposure on cultured motoneurons in a mouse model of ALS. J Neurophysiol 107(1):484–492

    Article  CAS  PubMed  Google Scholar 

  • Seppi K, Peralta C, Diem-Zangerl A et al (2006) Placebo-controlled trial of riluzole in multiple system atrophy. Eur J Neurol 13(10):1146–1148

    Article  CAS  PubMed  Google Scholar 

  • Sheets MF, Fozzard HA, Lipkind GM et al (2010) Sodium channel molecular conformations and antiarrhythmic drug affinity. Trends Cardiovasc Med 20(1):16–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JH, Huang CS, Nagata K et al (1997) Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther 282(2):707–714

    PubMed  CAS  Google Scholar 

  • Spadoni F, Hainsworth AH, Mercuri NB et al (2002) Lamotrigine derivatives and riluzole inhibit INa,P in cortical neurons. Neuroreport 13(9):1167–1170

    Article  CAS  PubMed  Google Scholar 

  • Statland JM, Bundy BN, Wang Y et al (2012) Mexiletine for symptoms and signs of myotonia in nondystrophic myotonia: a randomized controlled trial. JAMA 308(13):1357–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefani A, Spadoni F, Bernardi G (1997) Differential inhibition by riluzole, lamotrigine, and phenytoin of sodium and calcium currents in cortical neurons: implications for neuroprotective strategies. Exp Neurol 147(1):115–122

    Article  CAS  PubMed  Google Scholar 

  • Suetterlin KJ, Bugiardini E, Kaski JP et al (2015) Long-term safety and efficacy of mexiletine for patients with skeletal muscle channelopathies. JAMA Neurol 72(12):1531–1533

    Article  PubMed  Google Scholar 

  • Sugiyama A, Ni C, Arita J et al (1996) Effects of the antihypoxic and neuroprotective drug, lubeluzole, on repolarization phase of canine heart assessed by monophasic action potential recording. Toxicol Appl Pharmacol 139(1):109–114

    Article  CAS  PubMed  Google Scholar 

  • Tard C, Defebvre L, Moreau C et al (2017) Clinical features of amyotrophic lateral sclerosis and their prognostic value. Rev Neurol (Paris) 173(5):263–272

    Article  CAS  Google Scholar 

  • Theile JW, Cummins TR (2011) Inhibition of Navβ4 peptide-mediated resurgent sodium currents in Nav1.7 channels by carbamazepine, riluzole, and anandamide. Mol Pharmacol 80(4):724–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbani A, Belluzzi O (2000) Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 12(10):3567–3574

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Lin MW, Lin AA et al (2008) Riluzole-induced block of voltage-gated Na+ current and activation of BKCa channels in cultured differentiated human skeletal muscle cells. Life Sci 82(1-2):11–20

    Article  CAS  PubMed  Google Scholar 

  • Weiss SM, Saint DA (2010) The persistent sodium current blocker riluzole is antiarrhythmic and anti-ischaemic in a pig model of acute myocardial infarction. PLoS One 5(11):e14103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss S, Benoist D, White E et al (2010) Riluzole protects against cardiac ischaemia and reperfusion damage via block of the persistent sodium current. Br J Pharmacol 160(5):1072–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood H (2015) Movement disorders: repurposing riluzole to treat hereditary cerebellar ataxia. Nat Rev Neurol 11(10):547

    Article  PubMed  Google Scholar 

  • Zona C, Siniscalchi A, Mercuri NB et al (1998) Riluzole interacts with voltage-activated sodium and potassium currents in cultured rat cortical neurons. Neuroscience 85(3):931–938

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant #19027 from A.F.M. (Association Française contre les Myopathies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Desaphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Farinato, A., Altamura, C., Desaphy, JF. (2017). Effects of Benzothiazolamines on Voltage-Gated Sodium Channels. In: Chahine, M. (eds) Voltage-gated Sodium Channels: Structure, Function and Channelopathies. Handbook of Experimental Pharmacology, vol 246. Springer, Cham. https://doi.org/10.1007/164_2017_46

Download citation

Publish with us

Policies and ethics