Skip to main content

Allosteric Modulation of Opioid G-Protein Coupled Receptors by Sigma1 Receptors

  • Chapter
  • First Online:
Book cover Sigma Proteins: Evolution of the Concept of Sigma Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 244))

Abstract

Since their proposal in 1976, the concept of sigma1 receptors has been continually evolving. Initially thought to be a member of the opioid receptor family, molecular studies have now identified its genes and established its structure crystallographically. Much effort has now revealed its importance as a chaperone in the endoplasmic reticulum, but its functions extend beyond this. Sigma1 receptors have been associated with a host of signaling systems. Evidence over the past 20 years has established the modulatory effects of sigma1 ligands on opioid systems. Despite their inability to bind directly to opioid receptors, sigma1 ligands can modulate opioid analgesia in vivo and signal transduction mechanisms in vitro. Furthermore, sigma1 receptors can physically associate with GPCRs. Together, these findings show that sigma1 ligands can function as allosteric modulators of GPCR function through their association with the sigma1 receptors, which are in direct physical association with opioid receptors, members of the G-protein coupled family of receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aydar E, Palmer CP, Klyachko VA, Jackson MB (2002) The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 34:399–410

    Article  CAS  PubMed  Google Scholar 

  • Chien CC, Pasternak GW (1993) Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an anti-opioid sigma 1 system. Eur J Pharmacol 250:R7–R8

    Article  CAS  PubMed  Google Scholar 

  • Chien CC, Pasternak GW (1994) Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther 271:1583–1590

    CAS  PubMed  Google Scholar 

  • Chien C-C, Pasternak GW (1995a) (−)-Pentazocine analgesia in mice: interactions with a σ receptor system. Eur J Pharmacol 294:303–308

    Article  CAS  PubMed  Google Scholar 

  • Chien CC, Pasternak GW (1995b) Sigma antagonists potentiate opioid analgesia in rats. Neurosci Lett 190:137–139

    Article  CAS  PubMed  Google Scholar 

  • Chien CC, Carroll FI, Brown GP, Pan YX, Bowen W, Pasternak GW (1997) Synthesis and characterization of [125I]3′(−)-iodopentazocine, a selective σ1 receptor ligand. Eur J Pharmacol 321:361–368

    Article  CAS  PubMed  Google Scholar 

  • Crottes D, Guizouarn H, Martin P, Borgese F, Soriani O (2013) The sigma-1 receptor: a regulator of cancer cell electrical plasticity? Front Physiol 4:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E, Glossmann H (1996) Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A 93:8072–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Su TP (2003) Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther 306:718–725

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion Interface regulate Ca(2+) signaling and cell survival. Cell 131:596–610

    Article  CAS  PubMed  Google Scholar 

  • Heyman JS, Williams CL, Burks TF, Mosberg HI, Porreca F (1988) Dissociation of opioid antinociception and central gastrointestinal propulsion in the mouse: studies with naloxonazine. J Pharmacol Exp Ther 245:238–243

    CAS  PubMed  Google Scholar 

  • Kekuda R, Prasad PD, Fei Y-J, Leibach FH, Ganapathy V, Fei YJ (1996) Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1). Biochem Biophys Res Commun 229:553–558

    Article  CAS  PubMed  Google Scholar 

  • Kim FJ, Kovalyshyn I, Burgman M, Neilan C, Chien CC, Pasternak GW (2010) Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding. Mol Pharmacol 77:695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King MA, Pan Y-X, Mei J, Chang A, Xu J, Pasternak GW (1997) Enhanced kappa opioid analgesia by antisense targeting the σ1 receptor. Eur J Pharmacol 331:R5–R6

    Article  CAS  PubMed  Google Scholar 

  • King MA, Bradshaw S, Chang AH, Pintar JE, Pasternak GW (2001) Potentiation of opioid analgesia in dopamine2 receptor knockout mice: evidence for a tonically active anti-opioid system. J Neurosci 21:7788–7792

    CAS  PubMed  Google Scholar 

  • Lu Z, Xu J, Rossi GC, Majumdar S, Pasternak GW, Pan YX (2015) Mediation of opioid analgesia by a truncated 6-transmembrane GPCR. J Clin Invest 125:2626–2630

    Article  PubMed  PubMed Central  Google Scholar 

  • Majumdar S, Grinnell S, Le Rouzic V, Burgman M, Polikar L, Ansonoff M, Pintar J, Pan YX, Pasternak GW (2011) Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects. Proc Natl Acad Sci U S A 108:19776–19783

    Google Scholar 

  • Marek P, Mogil JS, Belknap JK, Sadowski B, Liebeskind JC (1993) Levorphanol and swim stress-induced analgesia in selectively bred mice: evidence for genetic commonalities. Brain Res 608:353–357

    Article  CAS  PubMed  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    CAS  PubMed  Google Scholar 

  • Martina M, Turcotte ME, Halman S, Bergeron R (2007) The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 578:143–157

    Article  CAS  PubMed  Google Scholar 

  • Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCann DJ, Weissman AD, Su T-P (1994) sigma-1 and sigma-2 sites in rat brain: comparison of regional, ontogenetic, and subcellular patterns. Synapse 17:182–189

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Pasternak GW (2001) Molecular cloning and pharmacological characterization of the rat sigma1 receptor. Biochem Pharmacol 62:349–355

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Pasternak GW (2002) Sigma1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther 300:1070–1074

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Pasternak GW (2007) Modulation of brainstem opiate analgesia in the rat by sigma 1 receptors: a microinjection study. J Pharmacol Exp Ther 322:1278–1285

    Article  CAS  PubMed  Google Scholar 

  • Mogil JS, Marek P, Flodman P, Spence MA, Sternberg WF, Kest B, Sadowski B, Liebeskind JC (1995) One or two genetic loci mediate high opiate analgesia in selectively bred mice. Pain 60:125–135

    Article  CAS  PubMed  Google Scholar 

  • Monnet FP, De Costa BR, Bowen WD (1996) Differentiation of sigma ligand-activated receptor subtypes that modulate NMDA-evoked [3H]-noradrenaline release in rat hippocampal slices. Br J Pharmacol 119:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskowitz AS, Terman GW, Carter KR, Morgan MJ, Liebeskind JC (1985) Analgesic, locomotor and lethal effects of morphine in the mouse: strain comparisons. Brain Res 361:46–51

    Article  CAS  PubMed  Google Scholar 

  • Pan YX, Mei J, Xu J, Wan BL, Zuckerman A, Pasternak GW (1998) Cloning and characterization of a mouse sigma1 receptor. J Neurochem 70:2279–2285

    Article  CAS  PubMed  Google Scholar 

  • Pan Y-X, Xu J, Mahurter L, Bolan EA, Xu MM, Pasternak GW (2001) Generation of the mu opioid receptor (MOR-1) protein by three new splice variants of the Oprm gene. Proc Natl Acad Sci U S A 98:14084–14089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan L, Pasternak DA, Xu J, Xu M-M, Pasternak GW, Pan Y-X (2017) Isolation and characterization of alternatively spliced variants of the mouse sigma1 receptor gene, Sigmar1. PLoS Biol 12(3):e0174694

    Google Scholar 

  • Pasternak GW (1994) Anti-opioid activity of sigma1 systems. Regul Pept 54:219–220

    Article  CAS  Google Scholar 

  • Pasternak GW (2007) Sigma1 receptors and the modulation of opioid analgesia. In: Matsumoto RR, Bowen WD, Su T-P (eds) Sigma receptors: chemistry, cell biology and clinical implications. Springer, New York, NY, pp 337–350

    Chapter  Google Scholar 

  • Paul D, Pasternak GW (1988) Differential blockade by naloxonazine of two μ opiate actions: analgesia and inhibition of gastrointestinal transit. Eur J Pharmacol 149:403–404

    Article  CAS  PubMed  Google Scholar 

  • Payne R, Pasternak GW (1992) Pain. In: Johnston MV, Macdonald RL, Young AB (eds) Principles of drug therapy in neurology. F.A. Davis, Philadelphia, PA, pp 268–301

    Google Scholar 

  • Payne R, Pasternak GW (1998) Pain. In: Coyles SJEJT (ed) Pharmacological management of neurological and psychiatric disorders. McGraw-Hill, New York, NY, pp 429–457

    Google Scholar 

  • Pert A, Yaksh TL (1974) Sites of morphine induced analgesia in primate brain: relation to pain pathways. Brain Res 80:135–140

    Article  CAS  PubMed  Google Scholar 

  • Pick CG, Cheng J, Paul D, Pasternak GW (1991) Genetic influences in opioid analgesic sensitivity in mice. Brain Res 566:295–298

    Article  CAS  PubMed  Google Scholar 

  • Rossi GC, Pasternak GW, Bodnar RJ (1994) μ and δ opioid synergy between the periaqueductal gray and the rostro-ventral medulla. Brain Res 665:85–93

    Article  CAS  PubMed  Google Scholar 

  • Rousseaux CG, Greene SF (2015) Sigma receptors [sigmaRs]: biology in normal and diseased states. J Recept Signal Transduct Res:1–62

    Google Scholar 

  • Schmidt HR, Zheng S, Gurpinar E, Koehl A, Manglik A, Kruse AC (2016) Crystal structure of the human σ1 receptor. Nature 532(7600):527–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seth P, Leibach FH, Ganapathy V (1997) Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor. Biochem Biophys Res Commun 241:535–540

    Article  CAS  PubMed  Google Scholar 

  • Seth P, Fei YJ, Li HW, Huang W, Leibach FH, Ganapathy V (1998) Cloning and functional characterization of a σ receptor from rat brain. J Neurochem 70:922–931

    Article  CAS  PubMed  Google Scholar 

  • Su TP, Hayashi T (2003) Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr Med Chem 10:2073–2080

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work described was supported, in part, by research grants (DA7242 and DA6241) from the National Institute on Drug Abuse and a Core Grant (CA08748) from the National Cancer Institute to MSKCC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavril W. Pasternak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pasternak, G.W. (2017). Allosteric Modulation of Opioid G-Protein Coupled Receptors by Sigma1 Receptors. In: Kim, F., Pasternak, G. (eds) Sigma Proteins: Evolution of the Concept of Sigma Receptors. Handbook of Experimental Pharmacology, vol 244. Springer, Cham. https://doi.org/10.1007/164_2017_34

Download citation

Publish with us

Policies and ethics