Skip to main content

Delta Opioid Receptors: Learning and Motivation

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 247))

Abstract

Delta opioid receptor (DOR) displays a unique, highly conserved, structure and an original pattern of distribution in the central nervous system, pointing to a distinct and specific functional role among opioid peptide receptors. Over the last 15 years, in vivo pharmacology and genetic models have allowed significant advances in the understanding of this role. In this review, we will focus on the involvement of DOR in modulating different types of hippocampal- and striatal-dependent learning processes as well as motor function, motivation, and reward. Remarkably, DOR seems to play a key role in balancing hippocampal and striatal functions, with major implications for the control of cognitive performance and motor function under healthy and pathological conditions.

This is a preview of subscription content, log in via an institution.

Change history

  • 16 July 2019

    The book was inadvertently published with error in the following chapters.

References

  • Aiba A, Chen C, Herrup K, Rosenmund C, Stevens CF, Tonegawa S (1994) Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell 79:365–375

    Article  CAS  PubMed  Google Scholar 

  • Alstermark B, Ekerot CF (2013) The lateral reticular nucleus: a precerebellar centre providing the cerebellum with overview and integration of motor functions at systems level. A new hypothesis. J Physiol 591:5453–5458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrose LM, Gallagher SM, Unterwald EM, Van Bockstaele EJ (2006) Dopamine-D1 and delta-opioid receptors co-exist in rat striatal neurons. Neurosci Lett 399:191–196

    Article  CAS  PubMed  Google Scholar 

  • Arlotta P, Molyneaux BJ, Jabaudon D, Yoshida Y, Macklis JD (2008) Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci 28:622–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aupperle RL, Paulus MP (2010) Neural systems underlying approach and avoidance in anxiety disorders. Dialogues Clin Neurosci 12:517–531

    Article  PubMed  Google Scholar 

  • Baldo BA, Kelley AE (2007) Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology (Berl) 191:439–459

    Article  CAS  Google Scholar 

  • Bannerman DM, Yee BK, Good MA, Heupel MJ, Iversen SD, Rawlins JN (1999) Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behav Neurosci 113:1170–1188

    Article  CAS  PubMed  Google Scholar 

  • Bannerman DM, Niewoehner B, Lyon L, Romberg C, Schmitt WB, Taylor A, Sanderson DJ, Cottam J, Sprengel R, Seeburg PH, Kohr G, Rawlins JN (2008) NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory but not incremental spatial reference memory. J Neurosci 28:3623–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker JA, Clesse D, Spiegelhalter C, Schwab Y, Le Merrer J, Kieffer BL (2014) Autistic-like syndrome in mu opioid receptor null mice is relieved by facilitated mGluR4 activity. Neuropsychopharmacology 39:2049–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrendero F, Plaza-Zabala A, Galeote L, Flores A, Bura SA, Kieffer BL, Maldonado R (2012) Influence of delta-opioid receptors in the behavioral effects of nicotine. Neuropsychopharmacology 37:2332–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertran-Gonzalez J, Laurent V, Chieng BC, Christie MJ, Balleine BW (2013) Learning-related translocation of delta-opioid receptors on ventral striatal cholinergic interneurons mediates choice between goal-directed actions. J Neurosci 33:16060–16071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodnar RJ (2004) Endogenous opioids and feeding behavior: a 30-year historical perspective. Peptides 25:697–725

    Article  CAS  PubMed  Google Scholar 

  • Bodnar RJ, Lamonte N, Israel Y, Kandov Y, Ackerman TF, Khaimova E (2005) Reciprocal opioid-opioid interactions between the ventral tegmental area and nucleus accumbens regions in mediating mu agonist-induced feeding in rats. Peptides 26:621–629

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR, Milgram NW, Srebro B (1991) Delta opioid receptor activation is required to induce LTP of synaptic transmission in the lateral perforant path in vivo. Brain Res 567:42–50

    Article  CAS  PubMed  Google Scholar 

  • Buzas B, Rosenberger J, Cox BM (1998) Ca2+/calmodulin-dependent transcriptional activation of delta-opioid receptor gene expression induced by membrane depolarization in NG108-15 cells. J Neurochem 70:105–112

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M (2014) Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 17:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Castane A, Theobald DE, Robbins TW (2010) Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav Brain Res 210:74–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Cen B, Yu Q, Guo J, Wu Y, Ling K, Cheng Z, Ma L, Pei G (2001) Direct binding of beta-arrestins to two distinct intracellular domains of the delta opioid receptor. J Neurochem 76:1887–1894

    Article  CAS  PubMed  Google Scholar 

  • Chavkin C, Shoemaker WJ, McGinty JF, Bayon A, Bloom FE (1985) Characterization of the prodynorphin and proenkephalin neuropeptide systems in rat hippocampus. J Neurosci 5:808–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chefer VI, Shippenberg TS (2009) Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice. Neuropsychopharmacology 34:887–898

    Article  CAS  PubMed  Google Scholar 

  • Childers SR (1991) Opioid receptor-coupled second messenger systems. Life Sci 48:1991–2003

    Article  CAS  PubMed  Google Scholar 

  • Chu Sin Chung P, Kieffer BL (2013) Delta opioid receptors in brain function and diseases. Pharmacol Ther 140:112–120

    Article  CAS  PubMed  Google Scholar 

  • Chu Sin Chung P, Keyworth HL, Martin-Garcia E, Charbogne P, Darcq E, Bailey A, Filliol D, Matifas A, Scherrer G, Ouagazzal AM, Gaveriaux-Ruff C, Befort K, Maldonado R, Kitchen I, Kieffer BL (2015) A novel anxiogenic role for the delta opioid receptor expressed in GABAergic forebrain neurons. Biol Psychiatry 77:404–415

    Article  CAS  PubMed  Google Scholar 

  • Ciamei A, Morton AJ (2009) Progressive imbalance in the interaction between spatial and procedural memory systems in the R6/2 mouse model of Huntington’s disease. Neurobiol Learn Mem 92:417–428

    Article  PubMed  Google Scholar 

  • Ciccocioppo R, Martin-Fardon R, Weiss F (2002) Effect of selective blockade of mu(1) or delta opioid receptors on reinstatement of alcohol-seeking behavior by drug-associated stimuli in rats. Neuropsychopharmacology 27:391–399

    Article  CAS  PubMed  Google Scholar 

  • Corbit LH, Balleine BW (2015) Learning and motivational processes contributing to Pavlovian-instrumental transfer and their neural bases: dopamine and beyond. Curr Top Behav Neurosci 27:259–289

    Article  Google Scholar 

  • Crain BJ, Chang KJ, McNamara JO (1986) Quantitative autoradiographic analysis of mu and delta opioid binding sites in the rat hippocampal formation. J Comp Neurol 246:170–180

    Article  CAS  PubMed  Google Scholar 

  • Cunningham CL, Groblewski PA, Voorhees CM (2011) Place conditioning. In: Olmstead MC (ed) Animal models of addiction (neuromethods). Humana Press, Totowa, pp 167–190

    Chapter  Google Scholar 

  • Dang MT, Yokoi F, Yin HH, Lovinger DM, Wang Y, Li Y (2006) Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc Natl Acad Sci U S A 103:15254–15259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P (2008) Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 33:1746–1759

    Article  CAS  PubMed  Google Scholar 

  • De Leonibus E, Pascucci T, Lopez S, Oliverio A, Amalric M, Mele A (2007) Spatial deficits in a mouse model of Parkinson disease. Psychopharmacology (Berl) 194:517–525

    Article  CAS  Google Scholar 

  • Deipolyi AR, Fang S, Palop JJ, Yu GQ, Wang X, Mucke L (2008) Altered navigational strategy use and visuospatial deficits in hAPP transgenic mice. Neurobiol Aging 29:253–266

    Article  CAS  PubMed  Google Scholar 

  • Dickerson BC, Eichenbaum H (2010) The episodic memory system: neurocircuitry and disorders. Neuropsychopharmacology 35:86–104

    Article  PubMed  Google Scholar 

  • Dikshtein Y, Barnea R, Kronfeld N, Lax E, Roth-Deri I, Friedman A, Gispan I, Elharrar E, Levy S, Ben-Tzion M, Yadid G (2013) Beta-endorphin via the delta opioid receptor is a major factor in the incubation of cocaine craving. Neuropsychopharmacology 38:2508–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ (2010) Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67:294–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do J, Kim JI, Bakes J, Lee K, Kaang BK (2012) Functional roles of neurotransmitters and neuromodulators in the dorsal striatum. Learn Mem 20:21–28

    Article  PubMed  CAS  Google Scholar 

  • Durieux PF, Bearzatto B, Guiducci S, Buch T, Waisman A, Zoli M, Schiffmann SN, de Kerchove d’Exaerde A (2009) D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat Neurosci 12:393–395

    Article  CAS  PubMed  Google Scholar 

  • Durieux PF, Schiffmann SN, de Kerchove d’Exaerde A (2012) Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO J 31:640–653

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215:244–254

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113:509–519

    Article  CAS  PubMed  Google Scholar 

  • Erbs E, Faget L, Scherrer G, Matifas A, Filliol D, Vonesch JL, Koch M, Kessler P, Hentsch D, Birling MC, Koutsourakis M, Vasseur L, Veinante P, Kieffer BL, Massotte D (2015) A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct 220:677–702

    Article  CAS  PubMed  Google Scholar 

  • Faget L, Erbs E, Le Merrer J, Scherrer G, Matifas A, Benturquia N, Noble F, Decossas M, Koch M, Kessler P, Vonesch JL, Schwab Y, Kieffer BL, Massotte D (2012) In vivo visualization of delta opioid receptors upon physiological activation uncovers a distinct internalization profile. J Neurosci 32:7301–7310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, Stevens RC (2014) Molecular control of delta-opioid receptor signalling. Nature 506:191–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, Befort K, Gaveriaux-Ruff C, Dierich A, LeMeur M, Valverde O, Maldonado R, Kieffer BL (2000) Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 25:195–200

    Article  CAS  PubMed  Google Scholar 

  • Gazyakan E, Hennegriff M, Haaf A, Landwehrmeyer GB, Feuerstein TJ, Jackisch R (2000) Characterization of opioid receptor types modulating acetylcholine release in septal regions of the rat brain. Naunyn Schmiedebergs Arch Pharmacol 362:32–40

    Article  CAS  PubMed  Google Scholar 

  • Georgoussi Z, Leontiadis L, Mazarakou G, Merkouris M, Hyde K, Hamm H (2006) Selective interactions between G protein subunits and RGS4 with the C-terminal domains of the mu- and delta-opioid receptors regulate opioid receptor signaling. Cell Signal 18:771–782

    Article  CAS  PubMed  Google Scholar 

  • Ghate A, Befort K, Becker JA, Filliol D, Bole-Feysot C, Demebele D, Jost B, Koch M, Kieffer BL (2007) Identification of novel striatal genes by expression profiling in adult mouse brain. Neuroscience 146:1182–1192

    Article  CAS  PubMed  Google Scholar 

  • Ghiglieri V, Sgobio C, Costa C, Picconi B, Calabresi P (2011) Striatum-hippocampus balance: from physiological behavior to interneuronal pathology. Prog Neurobiol 94:102–114

    Article  PubMed  Google Scholar 

  • Ghozland S, Matthes HW, Simonin F, Filliol D, Kieffer BL, Maldonado R (2002) Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J Neurosci 22:1146–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giralt A, Saavedra A, Carreton O, Arumi H, Tyebji S, Alberch J, Perez-Navarro E (2013) PDE10 inhibition increases GluA1 and CREB phosphorylation and improves spatial and recognition memories in a Huntington’s disease mouse model. Hippocampus 23:684–695

    Article  CAS  PubMed  Google Scholar 

  • Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng C, Wess J (1999) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M(4) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A 96:10483–10488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindaiah G, Wang Y, Cox CL (2010) Substance P selectively modulates GABA(A) receptor-mediated synaptic transmission in striatal cholinergic interneurons. Neuropharmacology 58:413–422

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM (2008) Habits, rituals, and the evaluative brain. Annu Rev Neurosci 31:359–387

    Article  CAS  PubMed  Google Scholar 

  • Guo ML, Mao LM, Wang JQ (2010) Modulation of M4 muscarinic acetylcholine receptors by interacting proteins. Neurosci Bull 26:469–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Cuesta J, Burokas A, Mancino S, Kummer S, Martin-Garcia E, Maldonado R (2014) Effects of genetic deletion of endogenous opioid system components on the reinstatement of cocaine-seeking behavior in mice. Neuropsychopharmacology 39:2974–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart G, Leung BK, Balleine BW (2014) Dorsal and ventral streams: the distinct role of striatal subregions in the acquisition and performance of goal-directed actions. Neurobiol Learn Mem 108:104–118

    Article  PubMed  Google Scholar 

  • Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36:52–73

    Article  CAS  PubMed  Google Scholar 

  • Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suarez-Farinas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry B, Fox SH, Crossman AR, Brotchie JM (2001) Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Exp Neurol 171:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hopkins CR, Lindsley CW, Niswender CM (2009) mGluR4-positive allosteric modulation as potential treatment for Parkinson’s disease. Future Med Chem 1:501–513

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson DM, Matthes HW, Valjent E, Sanchez-Blazquez P, Rodriguez-Diaz M, Garzon J, Kieffer BL, Maldonado R (2001) Lack of dependence and rewarding effects of deltorphin II in mu-opioid receptor-deficient mice. Eur J Neurosci 13:153–161

    CAS  PubMed  Google Scholar 

  • Ilyutchenok RY, Dubrovina NI (1995) Memory retrieval enhancement by kappa opioid agonist and mu, delta antagonists. Pharmacol Biochem Behav 52:683–687

    Article  CAS  PubMed  Google Scholar 

  • Inui T, Shimura T (2014) Delta-opioid receptor blockade in the ventral pallidum increases perceived palatability and consumption of saccharin solution in rats. Behav Brain Res 269:20–27

    Article  CAS  PubMed  Google Scholar 

  • Jacobson TK, Gruenbaum BF, Markus EJ (2012) Extensive training and hippocampus or striatum lesions: effect on place and response strategies. Physiol Behav 105:645–652

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZG, North RA (1992) Pre- and postsynaptic inhibition by opioids in rat striatum. J Neurosci 12:356–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo J, Son GH, Winters BL, Kim MJ, Whitcomb DJ, Dickinson BA, Lee YB, Futai K, Amici M, Sheng M, Collingridge GL, Cho K (2010) Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95. Nat Neurosci 13:1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Jocoy EL, Andre VM, Cummings DM, Rao SP, Wu N, Ramsey AJ, Caron MG, Cepeda C, Levine MS (2011) Dissecting the contribution of individual receptor subunits to the enhancement of N-methyl-d-aspartate currents by dopamine D1 receptor activation in striatum. Front Syst Neurosci 5:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jutkiewicz EM, Rice KC, Woods JH, Winsauer PJ (2003) Effects of the delta-opioid receptor agonist SNC80 on learning relative to its antidepressant-like effects in rats. Behav Pharmacol 14:509–516

    Article  CAS  PubMed  Google Scholar 

  • Jutkiewicz EM, Kaminsky ST, Rice KC, Traynor JR, Woods JH (2005) Differential behavioral tolerance to the delta-opioid agonist SNC80 ([(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-me thoxyphenyl)methyl]-N,N-diethylbenzamide) in Sprague-Dawley rats. J Pharmacol Exp Ther 315:414–422

    Google Scholar 

  • Katsuura Y, Taha SA (2014) Mu opioid receptor antagonism in the nucleus accumbens shell blocks consumption of a preferred sucrose solution in an anticipatory contrast paradigm. Neuroscience 261:144–152

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336:296–302

    Article  CAS  PubMed  Google Scholar 

  • Khaimova E, Kandov Y, Israel Y, Cataldo G, Hadjimarkou MM, Bodnar RJ (2004) Opioid receptor subtype antagonists differentially alter GABA agonist-induced feeding elicited from either the nucleus accumbens shell or ventral tegmental area regions in rats. Brain Res 1026:284–294

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, Tonegawa S (2014) Island cells control temporal association memory. Science 343:896–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitchen I, Slowe SJ, Matthes HW, Kieffer B (1997) Quantitative autoradiographic mapping of mu-, delta- and kappa-opioid receptors in knockout mice lacking the mu-opioid receptor gene. Brain Res 778:73–88

    Article  CAS  PubMed  Google Scholar 

  • Klenowski P, Morgan M, Bartlett SE (2015) The role of delta-opioid receptors in learning and memory underlying the development of addiction. Br J Pharmacol 172:297–310

    Article  CAS  PubMed  Google Scholar 

  • Ko JL, Arvidsson U, Williams FG, Law PY, Elde R, Loh HH (1999) Visualization of time-dependent redistribution of delta-opioid receptors in neuronal cells during prolonged agonist exposure. Brain Res Mol Brain Res 69:171–185

    Article  CAS  PubMed  Google Scholar 

  • Korotkova T, Fuchs EC, Ponomarenko A, von Engelhardt J, Monyer H (2010) NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68:557–569

    Article  CAS  PubMed  Google Scholar 

  • Kovoor A, Nappey V, Kieffer BL, Chavkin C (1997) Mu and delta opioid receptors are differentially desensitized by the coexpression of beta-adrenergic receptor kinase 2 and beta-arrestin 2 in xenopus oocytes. J Biol Chem 272:27605–27611

    Article  CAS  PubMed  Google Scholar 

  • Laurent V, Leung B, Maidment N, Balleine BW (2012) Mu- and delta-opioid-related processes in the accumbens core and shell differentially mediate the influence of reward-guided and stimulus-guided decisions on choice. J Neurosci 32:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent V, Bertran-Gonzalez J, Chieng BC, Balleine BW (2014) Delta-opioid and dopaminergic processes in accumbens shell modulate the cholinergic control of predictive learning and choice. J Neurosci 34:1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent V, Morse AK, Balleine BW (2015) The role of opioid processes in reward and decision-making. Br J Pharmacol 172:449–459

    Article  CAS  PubMed  Google Scholar 

  • Le Bourdonnec B, Windh RT, Ajello CW, Leister LK, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M, Wiant DD, Graczyk TM, Belanger S, Cassel JA, Feschenko MS, Brogdon BL, Smith SA, Christ DD, Derelanko MJ, Kutz S, Little PJ, DeHaven RN, DeHaven-Hudkins DL, Dolle RE (2008) Potent, orally bioavailable delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4′-piperidine]-4-yl)benzamide (ADL5859). J Med Chem 51:5893–5896

    Article  CAS  PubMed  Google Scholar 

  • Le Bourdonnec B, Windh RT, Leister LK, Zhou QJ, Ajello CW, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M, Wiant DD, Graczyk TM, Belanger S, Cassel JA, Feschenko MS, Brogdon BL, Smith SA, Derelanko MJ, Kutz S, Little PJ, DeHaven RN, DeHaven-Hudkins DL, Dolle RE (2009) Spirocyclic delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4′-piperidine]-4-yl) benzamide (ADL5747). J Med Chem 52:5685–5702

    Article  CAS  PubMed  Google Scholar 

  • Le Merrer J, Becker JA, Befort K, Kieffer BL (2009) Reward processing by the opioid system in the brain. Physiol Rev 89:1379–1412

    Article  CAS  PubMed  Google Scholar 

  • Le Merrer J, Plaza-Zabala A, Del Boca C, Matifas A, Maldonado R, Kieffer BL (2011) Deletion of the delta opioid receptor gene impairs place conditioning but preserves morphine reinforcement. Biol Psychiatry 69:700–703

    Article  CAS  PubMed  Google Scholar 

  • Le Merrer J, Faget L, Matifas A, Kieffer BL (2012) Cues predicting drug or food reward restore morphine-induced place conditioning in mice lacking delta opioid receptors. Psychopharmacology (Berl) 223:99–106

    Article  CAS  Google Scholar 

  • Le Merrer J, Rezai X, Scherrer G, Becker JA, Kieffer BL (2013) Impaired hippocampus-dependent and facilitated striatum-dependent behaviors in mice lacking the delta opioid receptor. Neuropsychopharmacology 38:1050–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Moine C, Kieffer B, Gaveriaux-Ruff C, Befort K, Bloch B (1994) Delta-opioid receptor gene expression in the mouse forebrain: localization in cholinergic neurons of the striatum. Neuroscience 62:635–640

    Article  CAS  PubMed  Google Scholar 

  • Levine AS, Grace M, Portoghese PS, Billington CJ (1994) The effect of selective opioid antagonists on butorphanol-induced feeding. Brain Res 637:242–248

    Article  CAS  PubMed  Google Scholar 

  • Lobo MK, Cui Y, Ostlund SB, Balleine BW, Yang XW (2007) Genetic control of instrumental conditioning by striatopallidal neuron-specific S1P receptor Gpr6. Nat Neurosci 10:1395–1397

    Article  CAS  PubMed  Google Scholar 

  • Logue SF, Grauer SM, Paulsen J, Graf R, Taylor N, Sung MA, Zhang L, Hughes Z, Pulito VL, Liu F, Rosenzweig-Lipson S, Brandon NJ, Marquis KL, Bates B, Pausch M (2009) The orphan GPCR, GPR88, modulates function of the striatal dopamine system: a possible therapeutic target for psychiatric disorders? Mol Cell Neurosci 42:438–447

    Article  CAS  PubMed  Google Scholar 

  • Longoni R, Cadoni C, Mulas A, Di Chiara G, Spina L (1998) Dopamine-dependent behavioural stimulation by non-peptide delta opioids BW373U86 and SNC 80: 2. Place-preference and brain microdialysis studies in rats. Behav Pharmacol 9:9–14

    CAS  PubMed  Google Scholar 

  • Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, Aston-Jones G (2011) Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area. Science 333:353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupica CR (1995) Delta and mu enkephalins inhibit spontaneous GABA-mediated IPSCs via a cyclic AMP-independent mechanism in the rat hippocampus. J Neurosci 15:737–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabrouk OS, Marti M, Salvadori S, Morari M (2009) The novel delta opioid receptor agonist UFP-512 dually modulates motor activity in hemiparkinsonian rats via control of the nigro-thalamic pathway. Neuroscience 164:360–369

    Article  CAS  PubMed  Google Scholar 

  • Mabrouk OS, Viaro R, Volta M, Ledonne A, Mercuri N, Morari M (2014) Stimulation of delta opioid receptor and blockade of nociceptin/orphanin FQ receptor synergistically attenuate parkinsonism. J Neurosci 34:12953–12962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour A, Thompson RC, Akil H, Watson SJ (1993) Delta opioid receptor mRNA distribution in the brain: comparison to delta receptor binding and proenkephalin mRNA. J Chem Neuroanat 6:351–362

    Article  CAS  PubMed  Google Scholar 

  • Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson SJ (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350:412–438

    Article  CAS  PubMed  Google Scholar 

  • Mansour A, Fox CA, Akil H, Watson SJ (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 18:22–29

    Article  CAS  PubMed  Google Scholar 

  • Marinelli PW, Funk D, Harding S, Li Z, Juzytsch W, Le AD (2009) Roles of opioid receptor subtypes in mediating alcohol-seeking induced by discrete cues and context. Eur J Neurosci 30:671–678

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin TJ, Kim SA, Cannon DG, Sizemore GM, Bian D, Porreca F, Smith JE (2000) Antagonism of delta(2)-opioid receptors by naltrindole-5′-isothiocyanate attenuates heroin self-administration but not antinociception in rats. J Pharmacol Exp Ther 294:975–982

    CAS  PubMed  Google Scholar 

  • Martinez JL Jr, Olson K, Hilston C (1984) Opposite effects of Met-enkephalin and Leu-enkephalin on a discriminated shock-escape task. Behav Neurosci 98:487–495

    Article  CAS  PubMed  Google Scholar 

  • Massart R, Guilloux JP, Mignon V, Sokoloff P, Diaz J (2009) Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents. Eur J Neurosci 30:397–414

    Article  PubMed  Google Scholar 

  • McCormick SE, Stoessl AJ (2002) Blockade of nigral and pallidal opioid receptors suppresses vacuous chewing movements in a rodent model of tardive dyskinesia. Neuroscience 112:851–859

    Article  CAS  PubMed  Google Scholar 

  • McDermott CM, Schrader LA (2011) Activation of kappa opioid receptors increases intrinsic excitability of dentate gyrus granule cells. J Physiol 589:3517–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQuiston AR (2011) Mu opioid receptor activation normalizes temporo-ammonic pathway driven inhibition in hippocampal CA1. Neuropharmacology 60:472–479

    Article  CAS  PubMed  Google Scholar 

  • Meirsman AC, Le Merrer J, Pellissier LP, Diaz J, Clesse D, Kieffer BL, Becker JA (2016) Mice lacking GPR88 show motor deficit, improved spatial learning, and low anxiety reversed by delta opioid antagonist. Biol Psychiatry 79:917–927

    Article  CAS  PubMed  Google Scholar 

  • Menkens K, Bilsky EJ, Wild KD, Portoghese PS, Reid LD, Porreca F (1992) Cocaine place preference is blocked by the delta-opioid receptor antagonist, naltrindole. Eur J Pharmacol 219:345–346

    Article  CAS  PubMed  Google Scholar 

  • Middei S, Geracitano R, Caprioli A, Mercuri N, Ammassari-Teule M (2004) Preserved fronto-striatal plasticity and enhanced procedural learning in a transgenic mouse model of Alzheimer’s disease overexpressing mutant hAPPswe. Learn Mem 11:447–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Miner P, Shimonova L, Khaimov A, Borukhova Y, Ilyayeva E, Ranaldi R, Bodnar RJ (2012) General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions. Brain Res 1443:34–51

    Article  CAS  PubMed  Google Scholar 

  • Montgomery KC (1955) The relation between fear induced by novel stimulation and exploratory behavior. J Comp Physiol Psychol 48:254–260

    Article  CAS  PubMed  Google Scholar 

  • Morales L, Perez-Garcia C, Alguacil LF (2001) Effects of yohimbine on the antinociceptive and place conditioning effects of opioid agonists in rodents. Br J Pharmacol 133:172–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder AH, Wardeh G, Hogenboom F, Frankhuyzen AL (1984) Kappa- and delta-opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release. Nature 308:278–280

    Article  CAS  PubMed  Google Scholar 

  • Mumby DG, Gaskin S, Glenn MJ, Schramek TE, Lehmann H (2002) Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learn Mem 9:49–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen CK, Simms JA, Bito-Onon JJ, Li R, Ananthan S, Bartlett SE (2012) The delta opioid receptor antagonist, SoRI-9409, decreases yohimbine stress-induced reinstatement of ethanol-seeking. Addict Biol 17:224–234

    Article  CAS  PubMed  Google Scholar 

  • Nogueiras R, Romero-Pico A, Vazquez MJ, Novelle MG, Lopez M, Dieguez C (2012) The opioid system and food intake: homeostatic and hedonic mechanisms. Obes Facts 5:196–207

    Article  PubMed  Google Scholar 

  • Nozaki C, Le Bourdonnec B, Reiss D, Windh RT, Little PJ, Dolle RE, Kieffer BL, Gaveriaux-Ruff C (2012) Delta-opioid mechanisms for ADL5747 and ADL5859 effects in mice: analgesia, locomotion, and receptor internalization. J Pharmacol Exp Ther 342:799–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogier R, Wrobel LJ, Raggenbass M (2008) Action of tachykinins in the hippocampus: facilitation of inhibitory drive to GABAergic interneurons. Neuroscience 156:527–536

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AM, Hawk JD, Abel T, Havekes R (2010) Post-training reversible inactivation of the hippocampus enhances novel object recognition memory. Learn Mem 17:155–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Olmstead MC, Ouagazzal AM, Kieffer BL (2009) Mu and delta opioid receptors oppositely regulate motor impulsivity in the signaled nose poke task. PLoS One 4:e4410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Overton DA (1978) Basic mechanisms of state-dependent learning. Psychopharmacol Bull 14:67–68

    CAS  PubMed  Google Scholar 

  • Packard MG (2009) Exhumed from thought: basal ganglia and response learning in the plus-maze. Behav Brain Res 199:24–31

    Article  PubMed  Google Scholar 

  • Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65:65–72

    Article  CAS  PubMed  Google Scholar 

  • Palmiter RD (2008) Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 1129:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavone F, Populin R, Castellano C, Kreil G, Melchiorri P (1990) Deltorphin, a naturally occurring peptide with high selectivity for delta opioid receptors, improves memory consolidation in two inbred strains of mice. Peptides 11:591–594

    Article  CAS  PubMed  Google Scholar 

  • Pei G, Kieffer BL, Lefkowitz RJ, Freedman NJ (1995) Agonist-dependent phosphorylation of the mouse delta-opioid receptor: involvement of G protein-coupled receptor kinases but not protein kinase C. Mol Pharmacol 48:173–177

    CAS  PubMed  Google Scholar 

  • Perreault ML, Graham D, Scattolon S, Wang Y, Szechtman H, Foster JA (2007) Cotreatment with the kappa opioid agonist U69593 enhances locomotor sensitization to the D2/D3 dopamine agonist quinpirole and alters dopamine D2 receptor and prodynorphin mRNA expression in rats. Psychopharmacology (Berl) 194:485–496

    Article  CAS  Google Scholar 

  • Perrine SA, Hoshaw BA, Unterwald EM (2006) Delta opioid receptor ligands modulate anxiety-like behaviors in the rat. Br J Pharmacol 147:864–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piskorowski RA, Chevaleyre V (2013) Delta-opioid receptors mediate unique plasticity onto parvalbumin-expressing interneurons in area CA2 of the hippocampus. J Neurosci 33:14567–14578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Place R, Lykken C, Beer Z, Suh J, McHugh TJ, Tonegawa S, Eichenbaum H, Sauvage MM (2012) NMDA signaling in CA1 mediates selectively the spatial component of episodic memory. Learn Mem 19:164–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell SB, Geyer MA, Gallagher D, Paulus MP (2004) The balance between approach and avoidance behaviors in a novel object exploration paradigm in mice. Behav Brain Res 152:341–349

    Article  PubMed  Google Scholar 

  • Pradhan AA, Clarke PB (2005) Comparison between delta-opioid receptor functional response and autoradiographic labeling in rat brain and spinal cord. J Comp Neurol 481:416–426

    Article  CAS  PubMed  Google Scholar 

  • Quintana A, Sanz E, Wang W, Storey GP, Guler AD, Wanat MJ, Roller BA, La Torre A, Amieux PS, McKnight GS, Bamford NS, Palmiter RD (2012) Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors. Nat Neurosci 15:1547–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezai X, Faget L, Bednarek E, Schwab Y, Kieffer BL, Massotte D (2012) Mouse delta opioid receptors are located on presynaptic afferents to hippocampal pyramidal cells. Cell Mol Neurobiol 32:509–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard JM, Castro DC, Difeliceantonio AG, Robinson MJ, Berridge KC (2013) Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci Biobehav Rev 37:1919–1931

    Article  PubMed  Google Scholar 

  • Roberts AJ, Gold LH, Polis I, McDonald JS, Filliol D, Kieffer BL, Koob GF (2001) Increased ethanol self-administration in delta-opioid receptor knockout mice. Alcohol Clin Exp Res 25:1249–1256

    CAS  PubMed  Google Scholar 

  • Robles Y, Vivas-Mejia PE, Ortiz-Zuazaga HG, Felix J, Ramos X, Pena de Ortiz S (2003) Hippocampal gene expression profiling in spatial discrimination learning. Neurobiol Learn Mem 80:80–95

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M, Abdala P, Barroso-Chinea P, Gonzalez-Hernandez T (2001) The deep mesencephalic nucleus as an output center of basal ganglia: morphological and electrophysiological similarities with the substantia nigra. J Comp Neurol 438:12–31

    Article  CAS  PubMed  Google Scholar 

  • Saitoh A, Sugiyama A, Nemoto T, Fujii H, Wada K, Oka J, Nagase H, Yamada M (2011) The novel delta opioid receptor agonist KNT-127 produces antidepressant-like and antinociceptive effects in mice without producing convulsions. Behav Brain Res 223:271–279

    Article  CAS  PubMed  Google Scholar 

  • Scherrer G, Befort K, Contet C, Becker J, Matifas A, Kieffer BL (2004) The delta agonists DPDPE and deltorphin II recruit predominantly mu receptors to produce thermal analgesia: a parallel study of mu, delta and combinatorial opioid receptor knockout mice. Eur J Neurosci 19:2239–2248

    Article  PubMed  Google Scholar 

  • Scherrer G, Tryoen-Toth P, Filliol D, Matifas A, Laustriat D, Cao YQ, Basbaum AI, Dierich A, Vonesh JL, Gaveriaux-Ruff C, Kieffer BL (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci U S A 103:9691–9696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelzeis MC, Mittleman G (1996) The hippocampus and reward: effects of hippocampal lesions on progressive-ratio responding. Behav Neurosci 110:1049–1066

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JP, Wingard JC, Packard MG (2002) Post-training reversible inactivation of hippocampus reveals interference between memory systems. Hippocampus 12:280–284

    Article  PubMed  Google Scholar 

  • Schulteis G, Martinez JL Jr (1990) ICI 174,864, a selective delta opioid antagonist, reverses the learning impairment produced by [leu]enkephalin. Psychopharmacology (Berl) 100:102–109

    Article  CAS  PubMed  Google Scholar 

  • Shahabi NA, Daaka Y, McAllen K, Sharp BM (1999) Delta opioid receptors expressed by stably transfected jurkat cells signal through the map kinase pathway in a ras-independent manner. J Neuroimmunol 94:48–57

    Article  CAS  PubMed  Google Scholar 

  • Shiflett MW, Balleine BW (2010) At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur J Neurosci 32:1735–1743

    Article  PubMed  PubMed Central  Google Scholar 

  • Shippenberg TS, Bals-Kubik R, Herz A (1987) Motivational properties of opioids: evidence that an activation of delta-receptors mediates reinforcement processes. Brain Res 436:234–239

    Article  CAS  PubMed  Google Scholar 

  • Simmons D, Self DW (2009) Role of mu- and delta-opioid receptors in the nucleus accumbens in cocaine-seeking behavior. Neuropsychopharmacology 34:1946–1957

    Article  CAS  PubMed  Google Scholar 

  • Simon R, Brylka H, Schwegler H, Venkataramanappa S, Andratschke J, Wiegreffe C, Liu P, Fuchs E, Jenkins NA, Copeland NG, Birchmeier C, Britsch S (2012) A dual function of Bcl11b/Ctip2 in hippocampal neurogenesis. EMBO J 31:2922–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slowe SJ, Simonin F, Kieffer B, Kitchen I (1999) Quantitative autoradiography of mu-,delta- and kappa1 opioid receptors in kappa-opioid receptor knockout mice. Brain Res 818:335–345

    Article  CAS  PubMed  Google Scholar 

  • Stephens DN, Duka T, Crombag HS, Cunningham CL, Heilig M, Crabbe JC (2010) Reward sensitivity: issues of measurement, and achieving consilience between human and animal phenotypes. Addict Biol 15:145–168

    Article  PubMed  Google Scholar 

  • Sutt S, Raud S, Abramov U, Innos J, Luuk H, Plaas M, Koks S, Zilmer K, Mahlapuu R, Zilmer M, Vasar E (2010) Relation of exploratory behaviour to plasma corticosterone and Wfs1 gene expression in Wistar rats. J Psychopharmacol 24:905–913

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Yoshiike M, Mizoguchi H, Kamei J, Misawa M, Nagase H (1994) Blockade of delta-opioid receptors prevents morphine-induced place preference in mice. Jpn J Pharmacol 66:131–137

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Tsuji M, Mori T, Ikeda H, Misawa M, Nagase H (1997) Involvement of dopamine-dependent and -independent mechanisms in the rewarding effects mediated by delta opioid receptor subtypes in mice. Brain Res 744:327–334

    Article  CAS  PubMed  Google Scholar 

  • Svoboda KR, Adams CE, Lupica CR (1999) Opioid receptor subtype expression defines morphologically distinct classes of hippocampal interneurons. J Neurosci 19:85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsao PI, von Zastrow M (2000) Type-specific sorting of G protein-coupled receptors after endocytosis. J Biol Chem 275:11130–11140

    Article  CAS  PubMed  Google Scholar 

  • Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW, Wess J, McKinzie DL, Felder C, Nomikos GG (2004) M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 18:1410–1412

    Article  CAS  PubMed  Google Scholar 

  • Ukai M, Takada A, Sasaki Y, Kameyama T (1997) Stimulation of delta1- and delta2-opioid receptors produces amnesia in mice. Eur J Pharmacol 338:1–6

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Ma YY, van den Buuse M (2006) Improved spatial recognition memory in mice lacking adenosine A2A receptors. Exp Neurol 199:438–445

    Article  CAS  PubMed  Google Scholar 

  • Ward SJ, Roberts DC (2007) Microinjection of the delta-opioid receptor selective antagonist naltrindole 5′-isothiocyanate site specifically affects cocaine self-administration in rats responding under a progressive ratio schedule of reinforcement. Behav Brain Res 182:140–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei CJ, Singer P, Coelho J, Boison D, Feldon J, Yee BK, Chen JF (2011) Selective inactivation of adenosine A(2A) receptors in striatal neurons enhances working memory and reversal learning. Learn Mem 18:459–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White NM, McDonald RJ (2002) Multiple parallel memory systems in the brain of the rat. Neurobiol Learn Mem 77:125–184

    Article  PubMed  Google Scholar 

  • Xie CW, Lewis DV (1995) Endogenous opioids regulate long-term potentiation of synaptic inhibition in the dentate gyrus of rat hippocampus. J Neurosci 15:3788–3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Kawamura Y, Yoshikawa M (2003) Effect of rubiscolin, a delta opioid peptide derived from Rubisco, on memory consolidation. Peptides 24:325–328

    Article  CAS  PubMed  Google Scholar 

  • Yin B, Meck WH (2014) Comparison of interval timing behaviour in mice following dorsal or ventral hippocampal lesions with mice having delta-opioid receptor gene deletion. Philos Trans R Soc Lond B Biol Sci 369:20120466

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin B, Troger AB (2011) Exploring the 4th dimension: hippocampus, time, and memory revisited. Front Integr Neurosci 5:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin HH, Mulcare SP, Hilario MR, Clouse E, Holloway T, Davis MI, Hansson AC, Lovinger DM, Costa RM (2009) Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat Neurosci 12:333–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Xin SM, Wu GX, Zhang WB, Ma L, Pei G (1999) Endogenous delta-opioid and ORL1 receptors couple to phosphorylation and activation of p38 MAPK in NG108-15 cells and this is regulated by protein kinase A and protein kinase C. J Neurochem 73:1502–1509

    Article  CAS  PubMed  Google Scholar 

  • Zhou SJ, Zhu ME, Shu D, Du XP, Song XH, Wang XT, Zheng RY, Cai XH, Chen JF, He JC (2009) Preferential enhancement of working memory in mice lacking adenosine A(2A) receptors. Brain Res 1303:74–83

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Le Merrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pellissier, L.P., Pujol, C.N., Becker, J.A.J., Le Merrer, J. (2016). Delta Opioid Receptors: Learning and Motivation. In: Jutkiewicz, E. (eds) Delta Opioid Receptor Pharmacology and Therapeutic Applications. Handbook of Experimental Pharmacology, vol 247. Springer, Cham. https://doi.org/10.1007/164_2016_89

Download citation

Publish with us

Policies and ethics