Skip to main content

Pathogenesis of COPD and Asthma

  • Chapter
  • First Online:
Pharmacology and Therapeutics of Asthma and COPD

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 237))

Abstract

Asthma and COPD remain two diseases of the respiratory tract with unmet medical needs. This review considers the current state of play with respect to what is known about the underlying pathogenesis of these two chronic inflammatory diseases of the lung. The review highlights why they are different conditions requiring different approaches to treatment and provides a backdrop for the subsequent chapters in this volume discussing recent advances in the pharmacology and treatment of asthma and COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agusti A et al (2012) Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One 7, e37483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aikawa T et al (1992) Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest 101(4):916–921

    Article  CAS  PubMed  Google Scholar 

  • Amin K (2012) The role of mast cells in allergic inflammation. Respir Med 106:9–14

    Article  PubMed  Google Scholar 

  • Barnes PJ (2008a) Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 8:183–192

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2008b) Cytokine networks in asthma and chronic obstructive pulmonary disease. J Clin Invest 118:3546–3556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes PJ (2010) Chronic obstructive pulmonary disease: effects beyond the lungs. PLoS Med 7, e1000220

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes PJ (2011) Pathophysiology of allergic inflammation. Immunol Rev 242(1):31–50

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2012) Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol 129(1):48–59

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131:636–645

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2014) Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med 35:71–86

    Article  PubMed  Google Scholar 

  • Barnes PJ (2015) Mechanisms of development of multimorbidity in the elderly. Eur Respir J 45:790–806

    Article  CAS  PubMed  Google Scholar 

  • Barrecheguren M, Esquinas C, Miravitlles M (2015) The asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS): opportunities and challenges. Curr Opin Pulm Med 21:74–79

    Article  CAS  PubMed  Google Scholar 

  • Benayoun L et al (2003) Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 167(10):1360–1368

    Article  PubMed  Google Scholar 

  • Bergeron C et al (2010) Airway remodelling in asthma: from benchside to clinical practice. Can Respir J 17(4):e85–e93

    Article  PubMed  PubMed Central  Google Scholar 

  • Bousquet J et al (2000) From Bronchoconstriction to airways inflammation and remodeling. Asthma 161(5):1720–1745

    CAS  Google Scholar 

  • Brusasco V et al (1998) Airway hyperresponsiveness in asthma: not just a matter of airway inflammation. Thorax 53:992–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brusselle GG, Joos GF, Bracke KR (2011) New insights into the immunology of chronic obstructive pulmonary disease. Lancet 378:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Caramori G et al (2011) Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer. Thorax 66:521–527

    Article  PubMed  Google Scholar 

  • Cookson W (1999) The alliance of genes and environment in asthma and allergy. Nature 402:5–11

    Article  Google Scholar 

  • Corren J (2013) Asthma phenotypes and endotypes: an evolving paradigm for classification. Discov Med 15(83):243–249

    PubMed  Google Scholar 

  • De Monchy JG et al (1985) Bronchoalveolar eosinophilia during allergen induced late asthmatic reactions. Am Rev Respir Dis 131(3):373–376

    PubMed  Google Scholar 

  • Deo SS et al (2010) Role played by Th2 cytokines in IgE mediated allergy and asthma. Lung India 27(2):66–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Stefano A et al (2002) Increased expression of NF-kB in bronchial biopsies from smokers and patients with COPD. Eur Respir J 20:556–563

    Article  PubMed  Google Scholar 

  • Donnelly LE, Barnes PJ (2012) Defective phagocytosis in airways disease. Chest 141:1055–1062

    Article  PubMed  Google Scholar 

  • Dusser DJ et al (1988) Airway neutral endopeptidase-like enzyme modulates tachykinin induced bronchoconstriction in vivo. J Appl Physiol 65:2385–2591

    Google Scholar 

  • Elias JA et al (1999) Airway remodelling in asthma. J Clin Invest 104(8):1001–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahy JV (2015) Type 2 inflammation in asthma – present in most, absent in many. Nat Rev Immunol 15:57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer SG et al (1990) Effects of epithelium removal on relaxation of airway smooth muscle induced by vasoactive intestinal peptide and electrical field stimulation. Br J Pharmacol 100:73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fireman P (2003) Understanding asthma pathophysiology. Allergy Asthma Proc 24(2):79–83

    CAS  PubMed  Google Scholar 

  • Frossard N (2000) Role of bronchial smooth muscle in inflammation. Rev Mal Respir 17(2 pt 2):559–563

    CAS  PubMed  Google Scholar 

  • Galban CJ et al (2012) Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 18:1711–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George SN et al (2014) Human rhinovirus infection during naturally occurring COPD exacerbations. Eur Respir J 44:87–96

    Article  PubMed  Google Scholar 

  • Grootendorst DC, Rabe KF (2004) Mechanisms of bronchial hyperreactivity in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 1:77–87

    Article  CAS  PubMed  Google Scholar 

  • Guenette JA, Webb KA, O’Donnell DE (2012) Does dynamic hyperinflation contribute to dyspnoea during exercise in patients with COPD? Eur Respir J 40:322–329

    Article  PubMed  Google Scholar 

  • Hara H et al (2013) Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol 305:L737–L746

    Article  CAS  PubMed  Google Scholar 

  • Hershey G et al (1997) The association of atopy with a gain of function mutation in the a subunit of the IL-4 receptor. N Engl J Med 337:1720–1725

    Article  CAS  PubMed  Google Scholar 

  • Hogg JC, Timens W (2009) The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 4:435–459

    Article  CAS  PubMed  Google Scholar 

  • Holgate ST (2012) Innate and adaptive immune responses in asthma. Nat Med 18:673–683

    Article  CAS  PubMed  Google Scholar 

  • Hurst JR et al (2010) Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med 363:1128–1138

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Barnes PJ (2009) COPD as a disease of accelerated lung aging. Chest 135:173–180

    Article  PubMed  Google Scholar 

  • Ito K et al (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 352:1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Janeway C (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York

    Google Scholar 

  • Jeffery PK et al (2006) Allergic rhinitis and asthma: inflammation in a one-airway condition. BMC Pulm Med 6:S5

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirkham PA, Barnes PJ (2013) Oxidative stress in COPD. Chest 144:266–273

    Article  CAS  PubMed  Google Scholar 

  • Kirkham PA et al (2011) Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of COPD. Am J Respir Crit Care Med 184:796–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrecht BN et al (2012) The airway epithelium in asthma. Nat Med 18(5):684–692

    Article  CAS  PubMed  Google Scholar 

  • Leckie MJ et al (2000) Effects of an IL-5 blocking monoclonal antibody on eosinophils, airway hyper responsiveness and the late asthmatic response. Lancet 356(9248):2144–2148

    Article  CAS  PubMed  Google Scholar 

  • Leikauf GD et al (1985) Bradykinin stimulates cl secretion and PGE2 release by canine tracheal epithelium. Am J Physiol 248:F48–F55

    CAS  PubMed  Google Scholar 

  • Lundgren R et al (1988) Morphological studies of bronchial mucosal biopsies from asthmatics before and after ten years of treatment with inhaled steroids. Eur Respir J 1(10):883–889

    CAS  PubMed  Google Scholar 

  • Madeo F, Zimmermann A, Maiuri MC, Kroemer G (2015) Essential role for autophagy in life span extension. J Clin Invest 125:85–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Malhotra D et al (2008) Decline in NRF2 regulated antioxidants in COPD lungs due to loss of its positive regulator DJ-1. Am J Respir Crit Care Med 178:592–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning PJ et al (1989) The effect of oral PGE2 on airway responsiveness in asthmatic subjects. Pulm Pharmacol 2:121–124

    Article  CAS  PubMed  Google Scholar 

  • Matsuse H et al (2003) Intranasal IL-12 produces discreet pulmonary and systemic effects on allergic inflammation and airway reactivity. Int Immunopharmacol 3:457–468

    Article  CAS  PubMed  Google Scholar 

  • McAleer JP, Kolls JK (2014) Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol Rev 260:129–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonough JE et al (2011) Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med 365:1567–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercado N et al (2011) Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 406:292–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercado N, Ito K, Barnes PJ (2015) Accelerated ageing in chronic obstructive pulmonary disease: new concepts. Thorax 70:482–489

    Article  PubMed  Google Scholar 

  • Mitani A, Ito K, Vuppusetty C, Barnes PJ, Mercado N (2015) Inhibition of mTOR restores corticosteroid sensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med

    Google Scholar 

  • Mizumura K, Cloonan SM, Haspel JA, Choi AM (2012) The emerging importance of autophagy in pulmonary diseases. Chest 142:1289–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizumura K et al (2014) Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest 124:3987–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukaro VR, Hodge S (2011) Airway clearance of apoptotic cells in COPD. Curr Drug Targets 12:460–468

    Article  CAS  PubMed  Google Scholar 

  • Murdoch JR et al (2010) Chronic inflammation and asthma. Mutat Res 690:24–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamaru Y et al (2009) A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J 23:2810–2819

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K (2010) Basophils are potent antigen presenting cells that selectively induce Th2 cells. Eur J Immunol 40:1836–1842

    Article  CAS  PubMed  Google Scholar 

  • O’Byrne PM et al (2003) Airway hyperresponsiveness. Chest 123(3):411S–416S

    Article  PubMed  Google Scholar 

  • O’Byrne PM et al (2011) Risks of pneumonia in patients with asthma taking inhaled corticosteroids. Am J Respir Crit Care Med 183(5):589–595

    Article  PubMed  Google Scholar 

  • Ortega HG et al (2014) Mepolizumab treated patients with severe eosinophilic asthma. N Engl J Med 371:1198–1207

    Article  PubMed  Google Scholar 

  • Page C, Pitchford S (2014) Platelets and allergic inflammation. Clin Exp Allergy 44(7):901–913

    Article  CAS  PubMed  Google Scholar 

  • Paschalaki KE et al (2013) Dysfunction of endothelial progenitor cells from smokers and COPD patients due to increased DNA damage and senescence. Stem Cells 31:2813–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peacock JL et al (2011) Outdoor air pollution and respiratory health in patients with COPD. Thorax 66:591–596

    Article  PubMed  Google Scholar 

  • Peinado VI, Pizarro S, Barbera JA (2008) Pulmonary vascular involvement in COPD. Chest 134:808–814

    Article  CAS  PubMed  Google Scholar 

  • Pepe C et al (2005) Differences in airway remodelling between subjects with severe and moderate asthma. J Allergy Clin Immunol 116(3):544–549

    Article  PubMed  Google Scholar 

  • Pitchford S (2007) Defining a role for platelets in allergic inflammation. Biochem Soc Trans 35(5):1104–1108

    Article  CAS  PubMed  Google Scholar 

  • Postma DS, Rabe KF (2015) The asthma-COPD overlap syndrome. N Engl J Med 373:1241–1249

    Article  CAS  PubMed  Google Scholar 

  • Renda T et al (2008) Increased activation of p38 MAPK in COPD. Eur Respir J 31:62–69

    Article  CAS  PubMed  Google Scholar 

  • Rt A (2014) The role of ADP in platelet activation and its signalling in a Murine model of acute allergic inflammation. King’s College London, London, https://kclpure.kcl.ac.uk/portal/files/33809036/2014_Amison_Richard_1063150_ethesis.pdf

    Google Scholar 

  • Seeger W et al (2013) Pulmonary hypertension in chronic lung diseases. J Am Coll Cardiol 62:D109–D116

    Article  PubMed  Google Scholar 

  • Seemungal TA et al (1998) Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157:1418–1422

    Article  CAS  PubMed  Google Scholar 

  • Seemungal T et al (2001) Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164:1618–1623

    Article  CAS  PubMed  Google Scholar 

  • Singh R et al (2014) Inflammatory thresholds and the species-specific effects of colonising bacteria in stable chronic obstructive pulmonary disease. Respir Res 15:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Sont JK et al (1996) Relationship between the inflammatory infiltrate in bronchial biopsy specimens and clinical severity of asthma in patients treated with inhaled steroids. Thorax 51:496–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suissa S et al (2013) Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax 68:1029–1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor AE et al (2010) Defective macrophage phagocytosis of bacteria in COPD. Eur Respir J 35:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Thomson NC et al (2008) Identification and management of adults with asthma prone to exacerbations: can we do better? BMC Pulm Med 8:27

    Article  PubMed  PubMed Central  Google Scholar 

  • van Schoor J et al (2005) Indirect bronchial hyperresponsiveness: the coming of age of a specific group of bronchial challenges. Clin Exp Allergy 35:250–261

    Article  CAS  PubMed  Google Scholar 

  • Veen JCC et al (2000) Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit Care Med 161:1902–1906

    Article  Google Scholar 

  • Wang YL et al (2008) Role of airway epithelial cells in development of asthma and allergic rhinitis. Respir Med 102(7):949–955

    Article  PubMed  Google Scholar 

  • Wardlaw AJ et al (2000) Eosinophils in asthma and other allergic diseases. Br Med Bull 56:985–1003

    Article  CAS  PubMed  Google Scholar 

  • Web.archive.org (2014) World Health Organisation | Asthma [online]. http://web.archive.org/web/20110629035454/http://www.who.int/mediacentre/factsheets/fs307/en/. Accessed 2 May 2016

  • Wedzicha JA, Seemungal TA (2007) COPD exacerbations: defining their cause and prevention. Lancet 370:786–796

    Article  PubMed  Google Scholar 

  • Wedzicha JA, Brill SE, Allinson JP, Donaldson GC (2013) Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease. BMC Med 11:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Wenzel SE et al (1997) Bronchoscopic evaluation of severe asthma, persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med 156:737–743

    Article  CAS  PubMed  Google Scholar 

  • Widdicombe JG (2003) Overview of neural pathways in allergy and asthma. Pulm Pharmacol Ther 16(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Woisin FE et al (2001) Relationship of airway responsiveness with airway morphometry in normal and immunized rabbits. Pulm Pharmacol Ther 14:75–83

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive Page .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Page, C., O’Shaughnessy, B., Barnes, P. (2016). Pathogenesis of COPD and Asthma. In: Page, C., Barnes, P. (eds) Pharmacology and Therapeutics of Asthma and COPD. Handbook of Experimental Pharmacology, vol 237. Springer, Cham. https://doi.org/10.1007/164_2016_61

Download citation

Publish with us

Policies and ethics