Skip to main content

Pharmacological Tool Compounds for the Free Fatty Acid Receptor 4 (FFA4/GPR120)

  • Chapter
  • First Online:
Free Fatty Acid Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 236))

Abstract

The free fatty acid receptor 4 (FFA4), also known as GPR120, is a G protein-coupled receptor that is activated by long-chain fatty acids and that has been associated with regulation of appetite, release of insulin controlling hormones, insulin sensitization, anti-inflammatory and potentially anti-obesity activity, and is progressively appearing as an attractive potential target for the treatment of metabolic dysfunctions such as obesity, type 2 diabetes and inflammatory disorders. Ongoing investigations of the pharmacological functions of FFA4 and validation of its potential as a therapeutic target depend critically on the appropriateness and quality of the available pharmacological probes or tool compounds. After a brief summary of the pharmacological functions of FFA4 and some general considerations on desirable properties for these pharmacological tool compounds, the individual compounds that have been or are currently being used as tools for probing the function of FFA4 in various in vitro and in vivo settings will be discussed and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57:7874–7887

    Article  CAS  PubMed  Google Scholar 

  • Arakawa K, Nishimura T, Sugimoto Y, Takahashi H, Shimamura T (2010) Preparation of heteroaryloxyphenyldihydrobenzisothiazoledioxide derivatives and analogs for use as GPR120 receptor modulators. Banyu Pharmaceutical, Tokyo. WO2010104195A1

    Google Scholar 

  • Arrowsmith CH, Audia JE, Austin C, Baell J, Bennett J, Blagg J et al (2015) The promise and peril of chemical probes. Nat Chem Biol 11:536–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo CM, Watterson KR, Wargent ET, Hansen SVF, Hudson BD, Kepczynska M et al (2016) A non-acidic free fatty acid receptor 4 agonists with antidiabetic activity. J Med Chem 59:8868–8878. doi:10.1021/acs.jmedchem.6b00685

    Article  CAS  PubMed  Google Scholar 

  • Baell JB, Holloway GA (2010) New substructure filters for removal of Pan Assay Interference Compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  CAS  PubMed  Google Scholar 

  • Bang-Andersen B, Ruhland T, Jorgensen M, Smith G, Frederiksen K, Jensen KG et al (2011) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem 54:3206–3221

    Article  CAS  PubMed  Google Scholar 

  • Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR et al (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148:619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunnage ME, Chekler EL, Jones LH (2013) Target validation using chemical probes. Nat Chem Biol 9:195–199

    Article  CAS  PubMed  Google Scholar 

  • Butcher AJ, Hudson BD, Shimpukade B, Alvarez-Curto E, Prihandoko R, Ulven T et al (2014) Concomitant action of structural elements and receptor phosphorylation determines arrestin-3 interaction with the free fatty acid receptor FFA4. J Biol Chem 289:18451–18465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142:592s–599s

    Google Scholar 

  • Chelliah M, Chu HD, Cox JM, Debenham JS, Eagen K, Lan P et al (2014) Preparation of substituted spiropiperidinyl compounds useful as GPR120 agonists. Merck Sharp & Dohme, Kenilworth, NJ. WO2014059232A2

    Google Scholar 

  • Christiansen E, Urban C, Grundmann M, Due-Hansen ME, Hagesaether E, Schmidt J et al (2011) Identification of a potent and selective free fatty acid receptor 1 (FFA1/GPR40) agonist with favorable physicochemical and in vitro ADME properties. J Med Chem 54:6691–6703

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schroder R, Hudson BD et al (2012) Free fatty acid receptor 1 (FFA1/GPR40) agonists: mesylpropoxy appendage lowers lipophilicity and improves ADME properties. J Med Chem 55:6624–6628

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schmidt J, Hansen SVF et al (2013) Discovery of a potent and selective free fatty acid receptor 1 agonist with low lipophilicity and high oral bioavailability. J Med Chem 56:982–992

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Watterson KR, Stocker CJ, Sokol E, Jenkins L, Simon K et al (2015) Activity of dietary fatty acids on FFA1 and FFA4 and characterization of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. Br J Nutr 113:1677–1688

    Article  CAS  PubMed  Google Scholar 

  • Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT et al (2012) Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One 7, e30571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornish J, MacGibbon A, Lin JM, Watson M, Callon KE, Tong PC et al (2008) Modulation of osteoclastogenesis by fatty acids. Endocrinology 149:5688–5695

    Article  CAS  PubMed  Google Scholar 

  • Davenport AP, Alexander SPH, Sharman JL, Pawson AJ, Benson HE, Monaghan AE et al (2013) International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev 65:967–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defossa E, Wagner M (2014) Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett 24:2991–3000

    Article  CAS  PubMed  Google Scholar 

  • Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107

    Article  CAS  PubMed  Google Scholar 

  • Egerod KL, Engelstoft MS, Lund ML, Grunddal KV, Zhao M, Barir-Jensen D et al (2015) Transcriptional and functional characterization of the G protein-coupled receptor repertoire of gastric somatostatin cells. Endocrinology 156:3909–3923

    Article  CAS  PubMed  Google Scholar 

  • Engelstoft MS, Park WM, Sakata I, Kristensen LV, Husted AS, Osborne-Lawrence S et al (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab 2:376–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Formicola R, Pevarello P, Kuhn C, Liberati C, Piscitelli F, Sodano M (2015) FFA4/GPR120 agonists: a survey of the recent patent literature. Pharm Pat Anal 4:443–451

    Article  CAS  PubMed  Google Scholar 

  • Frye SV (2010) The art of the chemical probe. Nat Chem Biol 6:159–161

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K, Yamasaki E, Ishii S, Tomimatsu A, Takahashi K, Hirane M et al (2015) Different roles of GPR120 and GPR40 in the acquisition of malignant properties in pancreatic cancer cells. Biochem Biophys Res Commun 465:512–515

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Huang Q, Jie Q, Lu W-G, Wang L, Li X-J et al (2015) GPR120: a bi-potential mediator to modulate the osteogenic and adipogenic differentiation of BMMSCs. Sci Rep 5:14080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrel G, Simon V, Denoyelle C, Cruciani-Guglielmacci C, Migrenne S, Counis R et al (2011) Unsaturated fatty acids stimulate LH secretion via novel PKCepsilon and -theta in gonadotrope cells and inhibit GnRH-induced LH release. Endocrinology 152:3905–3916

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Yoshimura M, Aizawa S, Kurotani R, Zigman JM, Sakai T et al (2014) G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro. Am J Physiol Endocrinol Metab 306:E28–E35

    Article  CAS  PubMed  Google Scholar 

  • Gozal D, Qiao Z, Almendros I, Zheng J, Khalyfa A, Shimpukade B et al (2016) Treatment with TUG891, a free fatty acid receptor 4 agonist, restores adipose tissue metabolic dysfunction following chronic sleep fragmentation in mice. Int J Obes 40:1143–1149

    Article  CAS  Google Scholar 

  • Hakim F, Kheirandish-Gozal L, Gozal D (2015a) Obesity and altered sleep: a pathway to metabolic derangements in children? Semin Pediatr Neurol 22:77–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E et al (2015b) Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice. Sleep 38:31–40

    PubMed  PubMed Central  Google Scholar 

  • Halder S, Kumar S, Sharma R (2013) The therapeutic potential of GPR120: a patent review. Expert Opin Ther Pat 23:1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M et al (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94

    Article  CAS  PubMed  Google Scholar 

  • Hostetler HA, Kier AB, Schroeder F (2006) Very-long-chain and branched-chain fatty acyl-CoAs are high affinity ligands for the peroxisome proliferator-activated receptor α (PPARα). Biochemistry 45:7669–7681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Murdoch H, Milligan G (2013a) Minireview: the effects of species ortholog and SNP variation on receptors for free fatty acids. Mol Endocrinol 27:1177–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Shimpukade B, Mackenzie AE, Butcher AJ, Pediani JD, Christiansen E et al (2013b) The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol Pharmacol 84:710–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Shimpukade B, Milligan G, Ulven T (2014) The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). J Biol Chem 289:20345–20358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries PS, Benbow JW, Bonin PD, Boyer D, Doran SD, Frisbie RK et al (2009) Synthesis and SAR of 1,2,3,4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists. Bioorg Med Chem Lett 19:2400–2403

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Hirane M, Kato S, Fukushima N, Tsujiuchi T (2015a) Opposite effects of GPR120 and GPR40 on cell motile activity induced by ethionine in liver epithelial cells. Biochem Biophys Res Commun 456:135–138

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Hirane M, Kitamura Y, Mori S, Fukushima N, Honoki K et al (2015b) Role of GPR120 in cell motile activity induced by 12-O-tetradecanoylphorbol-13-acetate in liver epithelial WB-F344 cells. Mol Cell Biochem 400:145–151

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Yoon HJ, Kim BK, Kang WY, Seong SJ, Lim MS et al (2015) G protein-coupled receptor 120 signaling negatively regulates osteoclast differentiation, survival, and function. J Cell Physiol 231:844–851

    Article  PubMed  Google Scholar 

  • Kita T, Kadochi Y, Takahashi K, Fukushima K, Yamasaki E, Uemoto T et al (2016) Diverse effects of G-protein-coupled free fatty acid receptors on the regulation of cellular functions in lung cancer cells. Exp Cell Res 342:193–199

    Article  CAS  PubMed  Google Scholar 

  • Kodadek T (2010) Rethinking screening. Nat Chem Biol 6:162–165

    Article  CAS  PubMed  Google Scholar 

  • Konno Y, Ueki S, Takeda M, Kobayashi Y, Tamaki M, Moritoki Y et al (2015) Functional analysis of free fatty acid receptor GPR120 in human eosinophils: implications in metabolic homeostasis. PLoS One 10, e0120386

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristinsson H, Smith DM, Bergsten P, Sargsyan E (2013) FFAR1 is involved in both the acute and chronic effects of palmitate on insulin secretion. Endocrinology 154:4078–4088

    Article  CAS  PubMed  Google Scholar 

  • Lengqvist J, Mata De Urquiza A, Bergman AC, Willson TM, Sjovall J, Perlmann T et al (2004) Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics 3:692–703

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yu Y, Funk CD (2013a) Cyclooxygenase-2 induction in macrophages is modulated by docosahexaenoic acid via interactions with free fatty acid receptor 4 (FFA4). FASEB J 27:4987–4997

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang H, Jiang C, Xu M, Pang Y, Feng J et al (2013b) Hyperhomocysteinemia promotes insulin resistance by inducing endoplasmic reticulum stress in adipose tissue. J Biol Chem 288:9583–9592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen LY, Sokolowska M, Eberlein M, Alsaaty S, Martinez-Anton A et al (2014) The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A(2) via GPR120 receptor to produce prostaglandin E(2) and plays an anti-inflammatory role in macrophages. Immunology 143:81–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Hopkins MM, Zhang Z, Quisenberry CB, Fix LC, Galvan BM et al (2015) Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells. J Pharmacol Exp Ther 352:380–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Novack A, Nashashibi I, Pham P, Rabbat CJ, Song J et al (2010) [(Heterocyclylmethoxy)aryl]alkanoic acid derivatives as GPR120 receptor agonists and preparation and uses thereof. Metabolex, Hayward, CA. WO2010048207A2

    Google Scholar 

  • Martin C, Passilly-Degrace P, Chevrot M, Ancel D, Sparks SM, Drucker DJ et al (2012) Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity. J Lipid Res 53:2256–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan G, Alvarez-Curto E, Watterson KR, Ulven T, Hudson BD (2015) Characterising pharmacological ligands to study the long chain fatty acid receptors GPR40/FFA1 and GPR120/FFA4. Br J Pharmacol 172:3254–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan G, Shimpukade B, Ulven T, Hudson BD (2016) Complex pharmacology of free fatty acid receptors. Chem Rev. doi:10.1021/acs.chemrev.6b00056

    PubMed  Google Scholar 

  • Mizuta K, Zhang Y, Mizuta F, Hoshijima H, Shiga T, Masaki E et al (2015) Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 309:L970–L982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moniri NH (2016) Free-fatty acid receptor-4 (GPR120): cellular and molecular function and its role in metabolic disorders. Biochem Pharmacol 110–111:1–15

    Article  PubMed  Google Scholar 

  • Offermanns S (2014) Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol 54:407–434

    Article  CAS  PubMed  Google Scholar 

  • Oh da Y, Olefsky JM (2016) G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat Rev Drug Discov 15:161–172

    Article  PubMed  Google Scholar 

  • Oh da Y, Walenta E, Akiyama TE, Lagakos WS, Lackey D, Pessentheiner AR et al (2014) A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med 20:942–947

    Article  PubMed  Google Scholar 

  • Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan WQ et al (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters JU (2013) Polypharmacology – foe or friend? J Med Chem 56:8955–8971

    Article  CAS  PubMed  Google Scholar 

  • Pizzonero M, Dupont S, Babel M, Beaumont S, Bienvenu N, Blanque R et al (2014) Discovery and optimization of an azetidine chemical series as a free fatty acid receptor 2 (FFA2) antagonist: from hit to clinic. J Med Chem 57:10044–10057

    Article  CAS  PubMed  Google Scholar 

  • Pouliot M, Jeanmart S (2016) Pan Assay Interference Compounds (PAINS) and other promiscuous compounds in antifungal research. J Med Chem 59:497–503

    Article  CAS  PubMed  Google Scholar 

  • Prihandoko R, Alvarez-Curto E, Hudson BD, Butcher AJ, Ulven T, Miller AM et al (2016) Distinct phosphorylation clusters determine the signaling outcome of free fatty acid receptor 4/G protein-coupled receptor 120. Mol Pharmacol 89:505–520

    Article  CAS  PubMed  Google Scholar 

  • Raptis DA, Limani P, Jang JH, Ungethum U, Tschuor C, Graf R et al (2014) GPR120 on Kupffer cells mediates hepatoprotective effects of omega3-fatty acids. J Hepatol 60:625–632

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol 6:41–47

    Article  CAS  PubMed  Google Scholar 

  • Sergeev E, Hojgaard Hansen A, Pandey SK, Mackenzie AE, Hudson BD, Ulven T et al (2015) Non-equivalence of key positively charged residues of the free fatty acid 2 receptor in the recognition and function of agonist versus antagonist ligands. J Biol Chem 291:303–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi DF, Song J, Ma J, Novack A, Pham P, Nashashibi I et al (2010) Preparation of benzofuranyl substituted phenylalkylcarboxylic acids as Gpr120 receptor agonists. Metabolex, Hayward, CA. WO2010080537A1

    Google Scholar 

  • Shimpukade B, Hudson BD, Hovgaard CK, Milligan G, Ulven T (2012) Discovery of a potent and selective GPR120 agonist. J Med Chem 55:4511–4515

    Article  CAS  PubMed  Google Scholar 

  • Song T, Peng J, Ren J, Wei HK, Peng J (2015) Cloning and characterization of spliced variants of the porcine G protein coupled receptor 120. Biomed Res Int 2015:813816

    PubMed  PubMed Central  Google Scholar 

  • Song T, Zhou Y, Peng J, Tao YX, Yang Y, Xu T et al (2016) GPR120 promotes adipogenesis through intracellular calcium and extracellular signal-regulated kinase 1/2 signal pathway. Mol Cell Endocrinol 434:1–13

    Article  CAS  PubMed  Google Scholar 

  • Sparks SM, Chen G, Collins JL, Danger D, Dock ST, Jayawickreme C et al (2014) Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120). Bioorg Med Chem Lett 24:3100–3103

    Article  CAS  PubMed  Google Scholar 

  • Stone VM, Dhayal S, Brocklehurst KJ, Lenaghan C, Sorhede Winzell M, Hammar M et al (2014) GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 57:1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun P, Wang T, Zhou Y, Liu H, Jiang H, Zhu W et al (2013) DC260126: a small-molecule antagonist of GPR40 that protects against pancreatic beta-Cells dysfunction in db/db mice. PLoS One 8, e66744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talukdar S, Olefsky JM, Osborn O (2011) Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci 32:543–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikhonova IG, Sum CS, Neumann S, Engel S, Raaka BM, Costanzi S et al (2008) Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. J Med Chem 51:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukahara T, Watanabe K, Watanabe T, Yamagami H, Sogawa M, Tanigawa T et al (2015) Tumor necrosis factor alpha decreases glucagon-like peptide-2 expression by up-regulating G-protein-coupled receptor 120 in Crohn disease. Am J Pathol 185:185–196

    Article  CAS  PubMed  Google Scholar 

  • Ulven T, Christiansen E (2015) Dietary influences on regulation of the long-chain fatty acid receptor FFA4/GPR120. Annu Rev Nutr 35:239–263

    Article  CAS  PubMed  Google Scholar 

  • Ulven T, Kostenis E (2006) Targeting the prostaglandin D2 receptors DP and CRTH2 for treatment of inflammation. Curr Top Med Chem 6:1427–1444

    Article  CAS  PubMed  Google Scholar 

  • Waring MJ, Baker DJ, Bennett SNL, Dossetter AG, Fenwick M, Garcia R et al (2015) Discovery of a series of 2-(pyridinyl)pyrimidines as potent antagonists of GPR40. Med Chem Commun 6:1024–1029

    Article  CAS  Google Scholar 

  • Watson SJ, Brown AJ, Holliday ND (2012) Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 81:631–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wauquier F, Philippe C, Leotoing L, Mercier S, Davicco MJ, Lebecque P et al (2013) The free fatty acid receptor G protein-coupled receptor 40 (GPR40) protects from bone loss through inhibition of osteoclast differentiation. J Biol Chem 288:6542–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellhauser L, Belsham DD (2014) Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons. J Neuroinflammation 11:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Workman P, Collins I (2010) Probing the probes: fitness factors for small molecule tools. Chem Biol 17:561–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Wang H, Zhao X, Shi Y, Jin M, Wan B et al (2013) Identification of G-protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma. Oncogene 32:5541–5550

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C et al (2013) Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38:1154–1163

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trond Ulven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hansen, S.V.F., Ulven, T. (2016). Pharmacological Tool Compounds for the Free Fatty Acid Receptor 4 (FFA4/GPR120). In: Milligan, G., Kimura, I. (eds) Free Fatty Acid Receptors. Handbook of Experimental Pharmacology, vol 236. Springer, Cham. https://doi.org/10.1007/164_2016_60

Download citation

Publish with us

Policies and ethics