Skip to main content

Polymorphic Variation in FFA Receptors: Functions and Consequences

  • Chapter
  • First Online:
Book cover Free Fatty Acid Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 236))

Abstract

Overfeeding of fat can cause various metabolic disorders including obesity and type 2 diabetes (T2D). Diet provided free fatty acids (FFAs) are not only essential nutrients, but they are also recognized as signaling molecules, which stimulate various important biological functions. Recently, several G protein-coupled receptors (GPCRs), including FFA1-4, have been identified as receptors of FFAs by various physiological and pharmacological studies. FFAs exert physiological functions through these FFA receptors (FFARs) depending on carbon chain length and degree of unsaturation. Functional analyses have revealed that several important metabolic processes, such as peptide hormone secretion, cell maturation and nerve activities, are regulated by FFARs and thereby FFARs contribute to the energy homeostasis through these physiological functions. Hence, FFARs are expected to be promising pharmacological targets for metabolic disorders since imbalances in energy homeostasis lead to metabolic disorders. In human, it is established that different responses of individuals to endogenous ligands and chemical drugs may be due to differences in the ability of such ligands to activate nucleotide polymorphic variants of receptors. However, the clear links between genetic variations that are involved in metabolic disorders and polymorphisms receptors have been relatively difficult to assess. In this review, I summarize current literature describing physiological functions of FFARs and genetic variations of those receptors to discuss the potential of FFARs as drug targets for metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Lahham SH, Roelofsen H, Priebe M, Weening D, Dijkstra M, Hoek A, Rezaee F, Venema K, Vonk RJ (2010) Regulation of adipokine production in human adipose tissue by propionic acid. Eur J Clin Invest 40(5):401–407. doi:10.1111/j.1365-2362.2010.02278.x

    Article  CAS  PubMed  Google Scholar 

  • Ancel D, Bernard A, Subramaniam S, Hirasawa A, Tsujimoto G, Hashimoto T, Passilly-Degrace P, Khan NA, Besnard P (2015) The oral lipid sensor GPR120 is not indispensable for the orosensory detection of dietary lipids in mice. J Lipid Res 56(2):369–378. doi:10.1194/jlr.M055202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andoh A, Tsujikawa T, Fujiyama Y (2003) Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Des 9(4):347–358

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Hirayama M, Hiroi S, Kaku K (2012) GPR40-induced insulin secretion by the novel agonist TAK-875: first clinical findings in patients with type 2 diabetes. Diabetes Obes Metab 14(3):271–278. doi:10.1111/j.1463-1326.2011.01525.x

    Article  CAS  PubMed  Google Scholar 

  • Bailey CJ (2012) Could FFAR1 assist insulin secretion in type 2 diabetes? Lancet 379(9824):1370–1371. doi:10.1016/S0140-6736(12)60165-2

    Article  PubMed  Google Scholar 

  • Balasubramanian S, Xia Y, Freinkman E, Gerstein M (2005) Sequence variation in G-protein-coupled receptors: analysis of single nucleotide polymorphisms. Nucleic Acids Res 33(5):1710–1721. doi:10.1093/nar/gki311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR (2002) Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418(6898):650–654. doi:10.1038/nature02666

    Article  CAS  PubMed  Google Scholar 

  • Bellahcene M, O’Dowd JF, Wargent ET, Zaibi MS, Hislop DC, Ngala RA, Smith DM, Cawthorne MA, Stocker CJ, Arch JR (2013) Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br J Nutr 109(10):1755–1764. doi:10.1017/S0007114512003923

    Article  CAS  PubMed  Google Scholar 

  • Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70(2):567–590

    CAS  PubMed  Google Scholar 

  • Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM, Martin JC, Scott KP, Buc Calderon P, Feron O, Muccioli GG, Sonveaux P, Cani PD, Delzenne NM (2012) Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer 107(8):1337–1344. doi:10.1038/bjc.2012.409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjursell M, Admyre T, Goransson M, Marley AE, Smith DM, Oscarsson J, Bohlooly YM (2011) Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 300(1):E211–E220. doi:10.1152/ajpendo.00229.2010

    Article  CAS  PubMed  Google Scholar 

  • Bonnefond A, Lamri A, Leloire A, Vaillant E, Roussel R, Levy-Marchal C, Weill J, Galan P, Hercberg S, Ragot S, Hadjadj S, Charpentier G, Balkau B, Marre M, Fumeron F, Froguel P (2015) Contribution of the low-frequency, loss-of-function p.R270H mutation in FFAR4 (GPR120) to increased fasting plasma glucose levels. J Med Genet 52(9):595–598. doi:10.1136/jmedgenet-2015-103065

    Article  CAS  PubMed  Google Scholar 

  • Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278(13):11303–11311. doi:10.1074/jbc.M211495200

    Article  CAS  PubMed  Google Scholar 

  • Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, McCoy DC, Kenakin TP, Andrews JL, Ammala C, Fornwald JA, Ignar DM, Jenkinson S (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148(5):619–628. doi:10.1038/sj.bjp.0706770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13):11312–11319. doi:10.1074/jbc.M211609200

    Article  CAS  PubMed  Google Scholar 

  • Burant CF, Viswanathan P, Marcinak J, Cao C, Vakilynejad M, Xie B, Leifke E (2012) TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379(9824):1403–1411. doi:10.1016/S0140-6736(11)61879-5

    Article  CAS  PubMed  Google Scholar 

  • Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, le Coutre J, Ninomiya Y, Damak S (2010) Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30(25):8376–8382. doi:10.1523/JNEUROSCI.0496-10.2010

    Article  CAS  PubMed  Google Scholar 

  • Chelikani PK, Haver AC, Reidelberger RD (2005) Intravenous infusion of peptide YY(3-36) potently inhibits food intake in rats. Endocrinology 146(2):879–888. doi:10.1210/en.2004-1138

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Urban C, Grundmann M, Due-Hansen ME, Hagesaether E, Schmidt J, Pardo L, Ullrich S, Kostenis E, Kassack M, Ulven T (2011) Identification of a potent and selective free fatty acid receptor 1 (FFA1/GPR40) agonist with favorable physicochemical and in vitro ADME properties. J Med Chem 54(19):6691–6703. doi:10.1021/jm2005699

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schmidt J, Hansen SV, Hudson BD, Zaibi M, Markussen SB, Hagesaether E, Milligan G, Cawthorne MA, Kostenis E, Kassack MU, Ulven T (2013a) Discovery of a potent and selective free fatty acid receptor 1 agonist with low lipophilicity and high oral bioavailability. J Med Chem 56(3):982–992. doi:10.1021/jm301470a

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Hansen SV, Urban C, Hudson BD, Wargent ET, Grundmann M, Jenkins L, Zaibi M, Stocker CJ, Ullrich S, Kostenis E, Kassack MU, Milligan G, Cawthorne MA, Ulven T (2013b) Discovery of TUG-770: a highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes. ACS Med Chem Lett 4(5):441–445. doi:10.1021/ml4000673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defossa E, Wagner M (2014) Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett 24(14):2991–3000. doi:10.1016/j.bmcl.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  • Dewulf EM, Ge Q, Bindels LB, Sohet FM, Cani PD, Brichard SM, Delzenne NM (2013) Evaluation of the relationship between GPR43 and adiposity in human. Nutr Metab 10(1):11. doi:10.1186/1743-7075-10-11

    Article  CAS  Google Scholar 

  • Edfalk S, Steneberg P, Edlund H (2008) Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57(9):2280–2287. doi:10.2337/db08-0307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelstoft MS, Park WM, Sakata I, Kristensen LV, Husted AS, Osborne-Lawrence S, Piper PK, Walker AK, Pedersen MH, Nohr MK, Pan J, Sinz CJ, Carrington PE, Akiyama TE, Jones RM, Tang C, Ahmed K, Offermanns S, Egerod KL, Zigman JM, Schwartz TW (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab 2(4):376–392. doi:10.1016/j.molmet.2013.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelstoft MS, Lund ML, Grunddal KV, Egerod KL, Osborne-Lawrence S, Poulsen SS, Zigman JM, Schwartz TW (2015) Research resource: a chromogranin a reporter for serotonin and histamine secreting enteroendocrine cells. Mol Endocrinol 29(11):1658–1671. doi:10.1210/me.2015-1106

    Article  CAS  PubMed  Google Scholar 

  • Ferdaoussi M, Bergeron V, Zarrouki B, Kolic J, Cantley J, Fielitz J, Olson EN, Prentki M, Biden T, MacDonald PE, Poitout V (2012) G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 55(10):2682–2692. doi:10.1007/s00125-012-2650-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6(2):121–131. doi:10.1038/nrmicro1817

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9(10):577–589. doi:10.1038/nrgastro.2012.156

    Article  CAS  PubMed  Google Scholar 

  • Flint HJ, Duncan SH, Scott KP, Louis P (2015) Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74(1):13–22. doi:10.1017/S0029665114001463

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272. doi:10.1124/mol.63.6.1256

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara K, Maekawa F, Yada T (2005) Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab 289(4):E670–E677. doi:10.1152/ajpendo.00035.2005

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga S, Setoguchi S, Hirasawa A, Tsujimoto G (2006) Monitoring ligand-mediated internalization of G protein-coupled receptor as a novel pharmacological approach. Life Sci 80(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Galindo MM, Voigt N, Stein J, van Lengerich J, Raguse JD, Hofmann T, Meyerhof W, Behrens M (2012) G protein-coupled receptors in human fat taste perception. Chem Senses 37(2):123–139. doi:10.1093/chemse/bjr069

    Article  CAS  PubMed  Google Scholar 

  • Ge H, Li X, Weiszmann J, Wang P, Baribault H, Chen JL, Tian H, Li Y (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149(9):4519–4526. doi:10.1210/en.2008-0059

    Article  CAS  PubMed  Google Scholar 

  • Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. doi:10.1038/nature15393

  • Gotoh C, Hong YH, Iga T, Hishikawa D, Suzuki Y, Song SH, Choi KC, Adachi T, Hirasawa A, Tsujimoto G, Sasaki S, Roh SG (2007) The regulation of adipogenesis through GPR120. Biochem Biophys Res Commun 354(2):591–597

    Article  CAS  PubMed  Google Scholar 

  • Hamid YH, Vissing H, Holst B, Urhammer SA, Pyke C, Hansen SK, Glumer C, Borch-Johnsen K, Jorgensen T, Schwartz TW, Pedersen O, Hansen T (2005) Studies of relationships between variation of the human G protein-coupled receptor 40 Gene and Type 2 diabetes and insulin release. Diabet Med 22(1):74–80. doi:10.1111/j.1464-5491.2005.01505.x

    Article  CAS  PubMed  Google Scholar 

  • Han JH, Kim IS, Jung SH, Lee SG, Son HY, Myung CS (2014) The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41. PLoS One 9(4):e95268. doi:10.1371/journal.pone.0095268

    Article  PubMed  PubMed Central  Google Scholar 

  • Hara T, Hirasawa A, Sun Q, Sadakane K, Itsubo C, Iga T, Adachi T, Koshimizu TA, Hashimoto T, Asakawa Y, Tsujimoto G (2009) Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn Schmiedebergs Arch Pharmacol 380(3):247–255. doi:10.1007/s00210-009-0425-9

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Kashihara D, Ichimura A, Kimura I, Tsujimoto G, Hirasawa A (2014) Role of free fatty acid receptors in the regulation of energy metabolism. Biochim Biophys Acta 1841(9):1292–1300. doi:10.1016/j.bbalip.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11(1):90–94. doi:10.1038/nm1168

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa A, Hara T, Katsuma S, Adachi T, Tsujimoto G (2008) Free fatty acid receptors and drug discovery. Biol Pharm Bull 31(10):1847–1851

    Article  CAS  PubMed  Google Scholar 

  • Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, Choi KC, Feng DD, Chen C, Lee HG, Katoh K, Roh SG, Sasaki S (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146(12):5092–5099. doi:10.1210/en.2005-0545

    Article  CAS  PubMed  Google Scholar 

  • Hudson BD, Christiansen E, Tikhonova IG, Grundmann M, Kostenis E, Adams DR, Ulven T, Milligan G (2012a) Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. FASEB J 26(12):4951–4965. doi:10.1096/fj.12-213314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G (2012b) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J Biol Chem 287(49):41195–41209. doi:10.1074/jbc.M112.396259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Due-Hansen ME, Christiansen E, Hansen AM, Mackenzie AE, Murdoch H, Pandey SK, Ward RJ, Marquez R, Tikhonova IG, Ulven T, Milligan G (2013a) Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor. J Biol Chem 288(24):17296–17312. doi:10.1074/jbc.M113.455337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Murdoch H, Milligan G (2013b) Minireview: the effects of species ortholog and SNP variation on receptors for free fatty acids. Mol Endocrinol 27(8):1177–1187. doi:10.1210/me.2013-1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Shimpukade B, Mackenzie AE, Butcher AJ, Pediani JD, Christiansen E, Heathcote H, Tobin AB, Ulven T, Milligan G (2013c) The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol Pharmacol 84(5):710–725. doi:10.1124/mol.113.087783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L, Kimura I, Leloire A, Liu N, Iida K, Choquet H, Besnard P, Lecoeur C, Vivequin S, Ayukawa K, Takeuchi M, Ozawa K, Tauber M, Maffeis C, Morandi A, Buzzetti R, Elliott P, Pouta A, Jarvelin MR, Korner A, Kiess W, Pigeyre M, Caiazzo R, Van Hul W, Van Gaal L, Horber F, Balkau B, Levy-Marchal C, Rouskas K, Kouvatsi A, Hebebrand J, Hinney A, Scherag A, Pattou F, Meyre D, Koshimizu TA, Wolowczuk I, Tsujimoto G, Froguel P (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483(7389):350–354. doi:10.1038/nature10798

    Article  CAS  PubMed  Google Scholar 

  • Ichimura A, Hasegawa S, Kasubuchi M, Kimura I (2014) Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front Pharmacol 5:236. doi:10.3389/fphar.2014.00236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue D, Kimura I, Wakabayashi M, Tsumoto H, Ozawa K, Hara T, Takei Y, Hirasawa A, Ishihama Y, Tsujimoto G (2012) Short-chain fatty acid receptor GPR41-mediated activation of sympathetic neurons involves synapsin 2b phosphorylation. FEBS Lett 586(10):1547–1554. doi:10.1016/j.febslet.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  • Insel PA, Tang CM, Hahntow I, Michel MC (2007) Impact of GPCRs in clinical medicine: monogenic diseases, genetic variants and drug targets. Biochim Biophys Acta 1768(4):994–1005. doi:10.1016/j.bbamem.2006.09.029

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Hinuma S (2005) GPR40, a free fatty acid receptor on pancreatic beta cells, regulates insulin secretion. Hepatol Res 33(2):171–173

    CAS  PubMed  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422(6928):173–176. doi:10.1038/nature01478

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki K, Harada N, Sasaki K, Yamane S, Iida K, Suzuki K, Hamasaki A, Nasteska D, Shibue K, Joo E, Harada T, Hashimoto T, Asakawa Y, Hirasawa A, Inagaki N (2015) Free fatty acid receptor GPR120 is highly expressed in enteroendocrine K cells of the upper small intestine and has a critical role in GIP secretion after fat ingestion. Endocrinology 156(3):837–846. doi:10.1210/en.2014-1653

    Article  CAS  PubMed  Google Scholar 

  • Kalis M, Leveen P, Lyssenko V, Almgren P, Groop L, Cilio CM (2007) Variants in the FFAR1 gene are associated with beta cell function. PLoS One 2(11):e1090. doi:10.1371/journal.pone.0001090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, Furness JB, Kuwahara A (2006) Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res 324(3):353–360. doi:10.1007/s00441-005-0140-x

    Article  CAS  PubMed  Google Scholar 

  • Karaki S, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K, Suzuki Y, Kuwahara A (2008) Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol 39(2):135–142. doi:10.1007/s10735-007-9145-y

    Article  CAS  PubMed  Google Scholar 

  • Karlsson F, Tremaroli V, Nielsen J, Backhed F (2013) Assessing the human gut microbiota in metabolic diseases. Diabetes 62(10):3341–3349. doi:10.2337/db13-0844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuma S, Hatae N, Yano T, Ruike Y, Kimura M, Hirasawa A, Tsujimoto G (2005) Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1. J Biol Chem 280(20):19507–19515. doi:10.1074/jbc.M412385200

    Article  CAS  PubMed  Google Scholar 

  • Kebede M, Alquier T, Latour MG, Semache M, Tremblay C, Poitout V (2008) The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 57(9):2432–2437. doi:10.2337/db08-0553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kebede MA, Alquier T, Latour MG, Poitout V (2009) Lipid receptors and islet function: therapeutic implications? Diabetes Obes Metab 11(Suppl 4):10–20. doi:10.1111/j.1463-1326.2009.01114.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145(2):396–406.e1–10. doi:10.1053/j.gastro.2013.04.056

  • Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A 108(19):8030–8035. doi:10.1073/pnas.1016088108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829. doi:10.1038/ncomms2852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koda S, Date Y, Murakami N, Shimbara T, Hanada T, Toshinai K, Niijima A, Furuya M, Inomata N, Osuye K, Nakazato M (2005) The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146(5):2369–2375. doi:10.1210/en.2004-1266

    Article  CAS  PubMed  Google Scholar 

  • Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B (2003a) A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun 301(2):406–410. doi:10.1016/s0006-291x(02)03064-4

    Article  CAS  PubMed  Google Scholar 

  • Kotarsky K, Nilsson NE, Olde B, Owman C (2003b) Progress in methodology. Improved reporter gene assays used to identify ligands acting on orphan seven-transmembrane receptors. Pharmacol Toxicol 93(6):249–258

    Article  CAS  PubMed  Google Scholar 

  • Lan H, Hoos LM, Liu L, Tetzloff G, Hu W, Abbondanzo SJ, Vassileva G, Gustafson EL, Hedrick JA, Davis HR (2008) Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease. Diabetes 57(11):2999–3006. doi:10.2337/db08-0596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL, Luo J, Lin DC, Poitout V (2007) GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 56(4):1087–1094. doi:10.2337/db06-1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278(28):25481–25489. doi:10.1074/jbc.M301403200

    Article  PubMed  CAS  Google Scholar 

  • Leifke E, Naik H, Wu J, Viswanathan P, Demanno D, Kipnes M, Vakilynejad M (2012) A multiple-ascending-dose study to evaluate safety, pharmacokinetics, and pharmacodynamics of a novel GPR40 agonist, TAK-875, in subjects with type 2 diabetes. Clin Pharmacol Ther 92(1):29–39. doi:10.1038/clpt.2012.43

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023. doi:10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  • Liaw CW, Connolly DT (2009) Sequence polymorphisms provide a common consensus sequence for GPR41 and GPR42. DNA Cell Biol 28(11):555–560. doi:10.1089/dna.2009.0916

    Article  CAS  PubMed  Google Scholar 

  • Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ, Raybould HE, Wank S (2011) The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140(3):903–912. doi:10.1053/j.gastro.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  • Little TJ, Isaacs NJ, Young RL, Ott R, Nguyen NQ, Rayner CK, Horowitz M, Feinle-Bisset C (2014) Characterization of duodenal expression and localization of fatty acid-sensing receptors in humans: relationships with body mass index. Am J Physiol Gastrointest Liver Physiol 307(10):G958–G967. doi:10.1152/ajpgi.00134.2014

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Swaminath G, Brown SP, Zhang J, Guo Q, Chen M, Nguyen K, Tran T, Miao L, Dransfield PJ, Vimolratana M, Houze JB, Wong S, Toteva M, Shan B, Li F, Zhuang R, Lin DC (2012) A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS One 7(10):e46300. doi:10.1371/journal.pone.0046300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma D, Tao B, Warashina S, Kotani S, Lu L, Kaplamadzhiev DB, Mori Y, Tonchev AB, Yamashima T (2007) Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci Res 58(4):394–401

    Article  CAS  PubMed  Google Scholar 

  • Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, Maruya M, Ian McKenzie C, Hijikata A, Wong C, Binge L, Thorburn AN, Chevalier N, Ang C, Marino E, Robert R, Offermanns S, Teixeira MM, Moore RJ, Flavell RA, Fagarasan S, Mackay CR (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 6:6734. doi:10.1038/ncomms7734

    Article  CAS  PubMed  Google Scholar 

  • Mancini AD, Poitout V (2013) The fatty acid receptor FFA1/GPR40 a decade later: how much do we know? Trends Endocrinol Metab 24(8):398–407. doi:10.1016/j.tem.2013.03.003; S1043-2760(13)00050-7 [pii]

  • Martin C, Passilly-Degrace P, Chevrot M, Ancel D, Sparks SM, Drucker DJ, Besnard P (2012) Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity. J Lipid Res 53(11):2256–2265. doi:10.1194/jlr.M025874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzuillo P, Grandone A, Conte M, Capuano F, Cirillo G, Di Sessa A, Umano GR, Romano R, Perrone L, del Giudice EM (2014) Novel association between a nonsynonymous variant (R270H) of the G-protein-coupled receptor 120 and liver injury in children and adolescents with obesity. J Pediatr Gastroenterol Nutr 59(4):472–475. doi:10.1097/MPG.0000000000000463

    Article  CAS  PubMed  Google Scholar 

  • Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286. doi:10.1038/nature08530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masui R, Sasaki M, Funaki Y, Ogasawara N, Mizuno M, Iida A, Izawa S, Kondo Y, Ito Y, Tamura Y, Yanamoto K, Noda H, Tanabe A, Okaniwa N, Yamaguchi Y, Iwamoto T, Kasugai K (2013) G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm Bowel Dis 19(13):2848–2856. doi:10.1097/01.MIB.0000435444.14860.ea

    Article  PubMed  Google Scholar 

  • Matsumura S, Eguchi A, Mizushige T, Kitabayashi N, Tsuzuki S, Inoue K, Fushiki T (2009) Colocalization of GPR120 with phospholipase-Cbeta2 and alpha-gustducin in the taste bud cells in mice. Neurosci Lett 450(2):186–190. doi:10.1016/j.neulet.2008.11.056

    Article  CAS  PubMed  Google Scholar 

  • McNelis JC, Lee YS, Mayoral R, van der Kant R, Johnson AM, Wollam J, Olefsky JM (2015) GPR43 potentiates beta-cell function in obesity. Diabetes 64(9):3203–3217. doi:10.2337/db14-1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuta K, Zhang Y, Mizuta F, Hoshijima H, Shiga T, Masaki E, Emala CW Sr (2015) Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 309(9):L970–L982. doi:10.1152/ajplung.00041.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore K, Zhang Q, Murgolo N, Hosted T, Duffy R (2009) Cloning, expression, and pharmacological characterization of the GPR120 free fatty acid receptor from cynomolgus monkey: comparison with human GPR120 splice variants. Comp Biochem Physiol B Biochem Mol Biol 154(4):419–426. doi:10.1016/j.cbpb.2009.08.005

    Article  PubMed  CAS  Google Scholar 

  • Nagasaki H, Kondo T, Fuchigami M, Hashimoto H, Sugimura Y, Ozaki N, Arima H, Ota A, Oiso Y, Hamada Y (2012) Inflammatory changes in adipose tissue enhance expression of GPR84, a medium-chain fatty acid receptor: TNFalpha enhances GPR84 expression in adipocytes. FEBS Lett 586(4):368–372. doi:10.1016/j.febslet.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  • Naik H, Vakilynejad M, Wu J, Viswanathan P, Dote N, Higuchi T, Leifke E (2012) Safety, tolerability, pharmacokinetics, and pharmacodynamic properties of the GPR40 agonist TAK-875: results from a double-blind, placebo-controlled single oral dose rising study in healthy volunteers. J Clin Pharmacol 52(7):1007–1016. doi:10.1177/0091270011409230; 0091270011409230 [pii]

  • Nilsson NE, Kotarsky K, Owman C, Olde B (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 303(4):1047–1052. doi:10.1016/s0006-291x(03)00488-1

    Article  CAS  PubMed  Google Scholar 

  • Nohr MK, Egerod KL, Christiansen SH, Gille A, Offermanns S, Schwartz TW, Moller M (2015) Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience 290:126–137. doi:10.1016/j.neuroscience.2015.01.040

    Article  CAS  PubMed  Google Scholar 

  • Offermanns S (2014) Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol 54:407–434. doi:10.1146/annurev-pharmtox-011613-135945

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Hirose H, Miyashita K, Saito I, Saruta T (2005) GPR40 gene Arg211His polymorphism may contribute to the variation of insulin secretory capacity in Japanese men. Metab Clin Exp 54(3):296–299. doi:10.1016/j.metabol.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  • Oh DY, Olefsky JM (2012) Omega 3 fatty acids and GPR120. Cell Metab 15(5):564–565. doi:10.1016/j.cmet.2012.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698. doi:10.1016/j.cell.2010.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pluznick J (2014) A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5(2):202–207. doi:10.4161/gmic.27492

    Article  PubMed  Google Scholar 

  • Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T, Firestein SJ, Yanagisawa M, Gordon JI, Eichmann A, Peti-Peterdi J, Caplan MJ (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 110(11):4410–4415. doi:10.1073/pnas.1215927110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poitout V, Lin DC (2013) Modulating GPR40: therapeutic promise and potential in diabetes. Drug Discov Today 18(23–24):1301–1308. doi:10.1016/j.drudis.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshini M, Layden BT (2015) FFAR3 modulates insulin secretion and global gene expression in mouse islets. Islets 7(2):e1045182. doi:10.1080/19382014.2015.1045182

    Article  PubMed  PubMed Central  Google Scholar 

  • Priyadarshini M, Villa SR, Fuller M, Wicksteed B, Mackay CR, Alquier T, Poitout V, Mancebo H, Mirmira RG, Gilchrist A, Layden BT (2015) An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol Endocrinol 29(7):1055–1066. doi:10.1210/me.2015-1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priyadarshini M, Wicksteed B, Schiltz GE, Gilchrist A, Layden BT (2016) SCFA receptors in pancreatic beta cells: novel diabetes targets? Trends Endocrinol Metab. doi:10.1016/j.tem.2016.03.011

    PubMed  Google Scholar 

  • Puhl HL 3rd, Won YJ, Lu VB, Ikeda SR (2015) Human GPR42 is a transcribed multisite variant that exhibits copy number polymorphism and is functional when heterologously expressed. Sci Rep 5:12880. doi:10.1038/srep12880

    Article  CAS  PubMed  Google Scholar 

  • Regard JB, Sato IT, Coughlin SR (2008) Anatomical profiling of G protein-coupled receptor expression. Cell 135(3):561–571. doi:10.1016/j.cell.2008.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Pacheco F, Garcia-Serrano S, Garcia-Escobar E, Gutierrez-Repiso C, Garcia-Arnes J, Valdes S, Gonzalo M, Soriguer F, Moreno-Ruiz FJ, Rodriguez-Canete A, Gallego-Perales JL, Martinez-Ferriz A, Rojo-Martinez G, Garcia-Fuentes E (2014) Effects of obesity/fatty acids on the expression of GPR120. Mol Nutr Food Res 58(9):1852–1860. doi:10.1002/mnfr.201300666

    Article  CAS  PubMed  Google Scholar 

  • Ryan KK, Seeley RJ (2013) Physiology. Food as a hormone. Science 339(6122):918–919. doi:10.1126/science.1234062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi A, Flodgren E, Nilsson NE, Jimenez-Feltstrom J, Miyazaki J, Owman C, Olde B (2005) Free fatty acid receptor 1 (FFA(1)R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion. Cell Tissue Res 322(2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105(43):16767–16772. doi:10.1073/pnas.0808567105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawzdargo M, George SR, Nguyen T, Xu S, Kolakowski LF, O’Dowd BF (1997) A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. Biochem Biophys Res Commun 239(2):543–547

    Article  CAS  PubMed  Google Scholar 

  • Schnell S, Schaefer M, Schofl C (2007) Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from beta-cells through activation of GPR40. Mol Cell Endocrinol 263(1–2):173–180. doi:10.1016/j.mce.2006.09.013

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi H, Kasubuchi M, Hasegawa S, Pelisch N, Kimura I, Ichimura A (2015) A novel antidiabetic therapy: free fatty acid receptors as potential drug target. Curr Diabetes Rev 11(2):107–115

    Article  CAS  PubMed  Google Scholar 

  • Sina C, Gavrilova O, Forster M, Till A, Derer S, Hildebrand F, Raabe B, Chalaris A, Scheller J, Rehmann A, Franke A, Ott S, Hasler R, Nikolaus S, Folsch UR, Rose-John S, Jiang HP, Li J, Schreiber S, Rosenstiel P (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 183(11):7514–7522. doi:10.4049/jimmunol.0900063

    Article  CAS  PubMed  Google Scholar 

  • Smith NJ, Stoddart LA, Devine NM, Jenkins L, Milligan G (2009) The action and mode of binding of thiazolidinedione ligands at free fatty acid receptor 1. J Biol Chem 284(26):17527–17539. doi:10.1074/jbc.M109.012849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573. doi:10.1126/science.1241165

    Article  CAS  PubMed  Google Scholar 

  • Spector AA, Kim HY (2014) Discovery of essential fatty acids. J Lipid Res. doi:10.1194/jlr.R055095

    PubMed  Google Scholar 

  • Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H (2005) The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab 1(4):245–258. doi:10.1016/j.cmet.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  • Stoddart LA, Smith NJ, Jenkins L, Brown AJ, Milligan G (2008a) Conserved polar residues in transmembrane domains V, VI, and VII of free fatty acid receptor 2 and free fatty acid receptor 3 are required for the binding and function of short chain fatty acids. J Biol Chem 283(47):32913–32924. doi:10.1074/jbc.M805601200

    Article  CAS  PubMed  Google Scholar 

  • Stoddart LA, Smith NJ, Milligan G (2008b) International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions. Pharmacol Rev 60(4):405–417. doi:10.1124/pr.108.00802

    Article  CAS  PubMed  Google Scholar 

  • Stone VM, Dhayal S, Brocklehurst KJ, Lenaghan C, Sorhede Winzell M, Hammar M, Xu X, Smith DM, Morgan NG (2014) GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 57(6):1182–1191. doi:10.1007/s00125-014-3213-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stumvoll M, Haring H (2002) The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism. Diabetes 51(8):2341–2347

    Article  CAS  PubMed  Google Scholar 

  • Suckow AT, Polidori D, Yan W, Chon S, Ma JY, Leonard J, Briscoe CP (2014) Alteration of the glucagon axis in GPR120 (FFAR4) knockout mice: a role for GPR120 in glucagon secretion. J Biol Chem 289(22):15751–15763. doi:10.1074/jbc.M114.568683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sum CS, Tikhonova IG, Neumann S, Engel S, Raaka BM, Costanzi S, Gershengorn MC (2007) Identification of residues important for agonist recognition and activation in GPR40. J Biol Chem 282(40):29248–29255. doi:10.1074/jbc.M705077200

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Takaishi S, Nagasaki M, Onozawa Y, Iino I, Maeda H, Komai T, Oda T (2013) Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor. J Biol Chem 288(15):10684–10691. doi:10.1074/jbc.M112.420042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykaras AG, Demenis C, Case RM, McLaughlin JT, Smith CP (2012) Duodenal enteroendocrine I-cells contain mRNA transcripts encoding key endocannabinoid and fatty acid receptors. PLoS One 7(8):e42373. doi:10.1371/journal.pone.0042373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano R, Yoshida M, Inoue M, Honda T, Nakashima R, Matsumoto K, Yano T, Ogata T, Watanabe N, Toda N (2014) Discovery of 3-aryl-3-ethoxypropanoic acids as orally active GPR40 agonists. Bioorg Med Chem Lett 24(13):2949–2953. doi:10.1016/j.bmcl.2014.04.065

    Article  CAS  PubMed  Google Scholar 

  • Taneera J, Lang S, Sharma A, Fadista J, Zhou Y, Ahlqvist E, Jonsson A, Lyssenko V, Vikman P, Hansson O, Parikh H, Korsgren O, Soni A, Krus U, Zhang E, Jing XJ, Esguerra JL, Wollheim CB, Salehi A, Rosengren A, Renstrom E, Groop L (2012) A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 16(1):122–134. doi:10.1016/j.cmet.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Chen Y, Jiang H, Robbins GT, Nie D (2011) G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int J Cancer 128(4):847–856. doi:10.1002/ijc.25638

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Ahmed K, Gille A, Lu S, Grone HJ, Tunaru S, Offermanns S (2015) Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 21(2):173–177. doi:10.1038/nm.3779

    Article  CAS  PubMed  Google Scholar 

  • Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262

    PubMed  Google Scholar 

  • Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y, Terasaki M, Kuwahara A (2009) Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 30(3):149–156

    Article  CAS  PubMed  Google Scholar 

  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371. doi:10.2337/db11-1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20(2):159–166. doi:10.1038/nm.3444

    Article  CAS  PubMed  Google Scholar 

  • Tsujihata Y, Ito R, Suzuki M, Harada A, Negoro N, Yasuma T, Momose Y, Takeuchi K (2011) TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J Pharmacol Exp Ther 339(1):228–237. doi:10.1124/jpet.111.183772; jpet.111.183772 [pii]

  • Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379(6560):69–72. doi:10.1038/379069a0

    Article  CAS  PubMed  Google Scholar 

  • Ulven T, Christiansen E (2015) Dietary fatty acids and their potential for controlling metabolic diseases through activation of FFA4/GPR120. Annu Rev Nutr 35:239–263. doi:10.1146/annurev-nutr-071714-034410

    Article  CAS  PubMed  Google Scholar 

  • Vestmar MA, Andersson EA, Christensen CR, Hauge M, Glumer C, Linneberg A, Witte DR, Jorgensen ME, Christensen C, Brandslund I, Lauritzen T, Pedersen O, Holst B, Grarup N, Schwartz TW, Hansen T (2016) Functional and genetic epidemiological characterisation of the FFAR4 (GPR120) p.R270H variant in the Danish population. J Med Genet. doi:10.1136/jmedgenet-2015-103728

  • Vettor R, Granzotto M, De Stefani D, Trevellin E, Rossato M, Farina MG, Milan G, Pilon C, Nigro A, Federspil G, Vigneri R, Vitiello L, Rizzuto R, Baratta R, Frittitta L (2008) Loss-of-function mutation of the GPR40 gene associates with abnormal stimulated insulin secretion by acting on intracellular calcium mobilization. J Clin Endocrinol Metab 93(9):3541–3550. doi:10.1210/jc.2007-2680

    Article  CAS  PubMed  Google Scholar 

  • Vinolo MA, Ferguson GJ, Kulkarni S, Damoulakis G, Anderson K, Bohlooly YM, Stephens L, Hawkins PT, Curi R (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 6(6):e21205. doi:10.1371/journal.pone.0021205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner R, Kaiser G, Gerst F, Christiansen E, Due-Hansen ME, Grundmann M, Machicao F, Peter A, Kostenis E, Ulven T, Fritsche A, Haring HU, Ullrich S (2013) Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans. Diabetes 62(6):2106–2111. doi:10.2337/db12-1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner R, Hieronimus A, Lamprinou A, Heni M, Hatziagelaki E, Ullrich S, Stefan N, Staiger H, Haring HU, Fritsche A (2014) Peroxisome proliferator-activated receptor gamma (PPARG) modulates free fatty acid receptor 1 (FFAR1) dependent insulin secretion in humans. Mol Metab 3(6):676–680. doi:10.1016/j.molmet.2014.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waguri T, Goda T, Kasezawa N, Yamakawa-Kobayashi K (2013) The combined effects of genetic variations in the GPR120 gene and dietary fat intake on obesity risk. Biomed Res 34(2):69–74

    Article  CAS  PubMed  Google Scholar 

  • Watson SJ, Brown AJ, Holliday ND (2012) Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 81(5):631–642. doi:10.1124/mol.111.077388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watterson KR, Hudson BD, Ulven T, Milligan G (2014) Treatment of type 2 diabetes by free fatty acid receptor agonists. Front Endocrinol 5:137. doi:10.3389/fendo.2014.00137

    Article  Google Scholar 

  • Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 101(4):1045–1050. doi:10.1073/pnas.2637002100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabuki C, Komatsu H, Tsujihata Y, Maeda R, Ito R, Matsuda-Nagasumi K, Sakuma K, Miyawaki K, Kikuchi N, Takeuchi K, Habata Y, Mori M (2013) A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1. PLoS One 8(10):e76280. doi:10.1371/journal.pone.0076280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonezawa T, Kobayashi Y, Obara Y (2007) Short-chain fatty acids induce acute phosphorylation of the p38 mitogen-activated protein kinase/heat shock protein 27 pathway via GPR43 in the MCF-7 human breast cancer cell line. Cell Signal 19(1):185–193. doi:10.1016/j.cellsig.2006.06.004

    Article  CAS  PubMed  Google Scholar 

  • Zaibi MS, Stocker CJ, O’Dowd J, Davies A, Bellahcene M, Cawthorne MA, Brown AJ, Smith DM, Arch JR (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 584(11):2381–2386. doi:10.1016/j.febslet.2010.04.027

    Article  CAS  PubMed  Google Scholar 

  • Zhou SF, Liu JP, Chowbay B (2009) Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 41(2):89–295. doi:10.1080/03602530902843483

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuhiko Ichimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ichimura, A. (2016). Polymorphic Variation in FFA Receptors: Functions and Consequences. In: Milligan, G., Kimura, I. (eds) Free Fatty Acid Receptors. Handbook of Experimental Pharmacology, vol 236. Springer, Cham. https://doi.org/10.1007/164_2016_57

Download citation

Publish with us

Policies and ethics