Skip to main content

Wnt Signaling in Cardiac Remodeling and Heart Failure

  • Chapter
  • First Online:
Heart Failure

Abstract

Wnt signaling plays an essential role during development, but is also activated in diseases as diverse as neurodegeneration, osteoporosis, and cancer. Accumulating evidence demonstrates that Wnt signaling is also activated during cardiac remodeling and heart failure. In this chapter, we will provide a brief overview of Wnt signaling in all its complexity. Then we will discuss the evidence for its involvement in the development of cardiac hypertrophy, the wound healing after myocardial infarction (MI) and heart failure. Finally, we will provide an overview of the drugs that are available to target Wnt signaling at different levels of the signaling cascade and the results of these pharmacological interventions in cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I, Hatzopoulos AK (2011) Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 4(4):469–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26

    Article  CAS  PubMed  Google Scholar 

  • Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM et al (2002) Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 99(2):907–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askevold ET, Aukrust P, Nymo SH, Lunde IG, Kaasboll OJ, Aakhus S et al (2014) The cardiokine secreted Frizzled-related protein 3, a modulator of Wnt signalling, in clinical and experimental heart failure. J Intern Med 275(6):621–630

    Article  CAS  PubMed  Google Scholar 

  • Barandon L, Couffinhal T, Ezan J, Dufourcq P, Costet P, Alzieu P et al (2003) Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation 108(18):2282–2289

    Article  CAS  PubMed  Google Scholar 

  • Barandon L, Casassus F, Leroux L, Moreau C, Allieres C, Lamaziere JM et al (2011) Secreted frizzled-related protein-1 improves postinfarction scar formation through a modulation of inflammatory response. Arterioscler Thromb Vasc Biol 31(11):e80–e87

    Article  CAS  PubMed  Google Scholar 

  • Baurand A, Zelarayan L, Betney R, Gehrke C, Dunger S, Noack C et al (2007) Beta-catenin downregulation is required for adaptive cardiac remodeling. Circ Res 100(9):1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Blagodatski A, Poteryaev D, Katanaev VL (2014) Targeting the Wnt pathways for therapies. Mol Cell Ther 2:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Blankesteijn WM, Hermans KC (2015) Wnt signaling in atherosclerosis. Eur J Pharmacol 763:122–130

    Article  Google Scholar 

  • Blankesteijn WM, Essers-Janssen YPG, Ulrich MMW, Smits JFM (1996) Increased expression of a homologue of Drosophila tissue polarity gene ‘frizzled’ in left ventricular hypertrophy in the rat, as determined by subtractive hybridization. J Mol Cell Cardiol 28:1187–1191

    Article  CAS  PubMed  Google Scholar 

  • Blankesteijn WM, Essers-Janssen YP, Verluyten MJ, Daemen MJ, Smits JF (1997) A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med 3(5):541–544

    Article  CAS  PubMed  Google Scholar 

  • Blankesteijn WM, van Gijn ME, Essers-Janssen YPG, Daemen MJAP, Smits JFM (2000) Beta-catenin, an inducer of uncontrolled cell proliferation and migration in malignancies, is localized in the cytoplasm of vascular endothelial cells during neovascularization after myocardial infarction. Am J Pathol 157:877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T et al (2006) The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108(3):965–973

    Article  CAS  PubMed  Google Scholar 

  • Blyszczuk P, Muller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S et al (2016) Transforming growth factor-beta-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. doi:10.1093/eurheartj/ehw116

  • Bond J, Sedmera D, Jourdan J, Zhang Y, Eisenberg CA, Eisenberg LM et al (2003) Wnt11 and Wnt7a are up-regulated in association with differentiation of cardiac conduction cells in vitro and in vivo. Dev Dyn 227(4):536–543

    Article  CAS  PubMed  Google Scholar 

  • Brade T, Manner J, Kuhl M (2006) The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart. Cardiovasc Res 72(2):198–209

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wu Q, Guo F, Xia B, Zuo J (2004) Expression of Dishevelled-1 in wound healing after acute myocardial infarction: possible involvement in myofibroblast proliferation and migration. J Cell Mol Med 8(2):257–264

    Article  CAS  PubMed  Google Scholar 

  • Cleutjens JPM, Blankesteijn WM, Daemen MJAP, Smits JFM (1999) The infarcted myocardium: simply dead tissue or a lively target for therapeutic interventions. Cardiovasc Res 44:232–241

    Article  CAS  PubMed  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480

    Article  CAS  PubMed  Google Scholar 

  • Daskalopoulos EP, Janssen BJ, Blankesteijn WM (2012) Myofibroblasts in the infarct area: concepts and challenges. Microsc Microanal 18(1):35–49

    Article  CAS  PubMed  Google Scholar 

  • Daskalopoulos EP, Hermans KC, Janssen BJ, Matthijs BW (2013) Targeting the Wnt/frizzled signaling pathway after myocardial infarction: a new tool in the therapeutic toolbox? Trends Cardiovasc Med 23(4):121–127

    Article  CAS  PubMed  Google Scholar 

  • Dejana E (2010) The role of wnt signaling in physiological and pathological angiogenesis. Circ Res 107(8):943–952

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Gherghe C, Liu D, Hamlett E, Srikantha L, Rodgers L et al (2012) Wnt1/betacatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J 31(2):429–442

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg CA, Gourdie RG, Eisenberg LM (1997) Wnt-11 is expressed in early avian mesoderm and required for the differentiation of the quail mesoderm cell line QCE-6. Development 124(2):525–536

    CAS  PubMed  Google Scholar 

  • Francis Stuart SD, De Jesus NM, Lindsey ML, Ripplinger CM (2016) The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J Mol Cell Cardiol 91:114–122

    Article  CAS  PubMed  Google Scholar 

  • Fujio Y, Matsuda T, Oshima Y, Maeda M, Mohri T, Ito T et al (2004) Signals through gp130 upregulate Wnt5a and contribute to cell adhesion in cardiac myocytes. FEBS Lett 573(1–3):202–206

    Article  CAS  PubMed  Google Scholar 

  • Gurpinar E, Grizzle WE, Piazza GA (2014) NSAIDs inhibit tumorigenesis, but how? Clin Cancer Res 20(5):1104–1113

    Article  CAS  PubMed  Google Scholar 

  • Hagenmueller M, Riffel JH, Bernhold E, Fan J, Zhang M, Ochs M et al (2013) Dapper-1 induces myocardial remodeling through activation of canonical Wnt signaling in cardiomyocytes. Hypertension 61(6):1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Hagenmueller M, Riffel JH, Bernhold E, Fan J, Katus HA, Hardt SE (2014) Dapper-1 is essential for Wnt5a induced cardiomyocyte hypertrophy by regulating the Wnt/PCP pathway. FEBS Lett 588(14):2230–2237

    Article  CAS  PubMed  Google Scholar 

  • Hahn JY, Cho HJ, Bae JW, Yuk HS, Kim KI, Park KW et al (2006) Beta-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts. J Biol Chem 281(41):30979–30989

    Article  CAS  PubMed  Google Scholar 

  • Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A et al (2000) Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 151:117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B et al (2003) Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci U S A 100(8):4610–4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W, Zhang L, Ni A, Zhang Z, Mirotsou M, Mao L et al (2010) Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci U S A 107(49):21110–21115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermans KC, Blankesteijn WM (2015) Wnt signaling in cardiac disease. Compr Physiol 5(3):1183–11209

    Article  PubMed  Google Scholar 

  • Hermans KC, Daskalopoulos EP, Blankesteijn WM (2016) The Janus face of myofibroblasts in the remodeling heart. J Mol Cell Cardiol 91:35–41

    Article  CAS  PubMed  Google Scholar 

  • Hou N, Ye B, Li X, Margulies KB, Xu H, Wang X, et al (2016) Transcription factor 7-like 2 mediates canonical Wnt/beta-catenin signaling and c-Myc upregulation in heart failure. Circ Heart Fail 9(6). pii:e003010. doi:10.1161/CIRCHEARTFAILURE.116.003010

    Google Scholar 

  • Huisamen B, Hafver TL, Lumkwana D, Lochner A (2016) The impact of chronic glycogen synthase kinase-3 inhibition on remodeling of normal and Pre-diabetic Rat hearts. Cardiovasc Drugs Ther 30(3):237–246, Sponsored by the International Society of Cardiovascular Pharmacotherapy

    Article  CAS  PubMed  Google Scholar 

  • Hurlstone AF, Haramis AP, Wienholds E, Begthel H, Korving J, Van Eeden F et al (2003) The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425(6958):633–637

    Article  CAS  PubMed  Google Scholar 

  • Janda CY, Garcia KC (2015) Wnt acylation and its functional implication in Wnt signalling regulation. Biochem Soc Trans 43(2):211–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC (2012) Structural basis of Wnt recognition by Frizzled. Science 337(6090):59–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenei V, Sherwood V, Howlin J, Linnskog R, Safholm A, Axelsson L et al (2009) A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion. Proc Natl Acad Sci U S A 106(46):19473–19478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Guo B, Yan J, Yang R, Chang L, Wang Y et al (2015) Angiotensin II increases secreted frizzled- elated protein 5 (sFRP5) expression through AT1 receptor/Rho/ROCK1/JNK signaling in cardiomyocytes. Mol Cell Biochem 408(1–2):215–222

    Article  CAS  PubMed  Google Scholar 

  • Joiner DM, Ke J, Zhong Z, Xu HE, Williams BO (2013) LRP5 and LRP6 in development and disease. Trends Endocrinol Metab 24(1):31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T et al (2009) Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16:279–283

    Article  CAS  PubMed  Google Scholar 

  • Laeremans H, Hackeng TM, van Zandvoort MA, Thijssen VL, Janssen BJ, Ottenheijm HC et al (2011) Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation 124(15):1626–1635

    Article  CAS  PubMed  Google Scholar 

  • Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal H, Ahmad F, Woodgett J, Force T (2015) The GSK-3 family as therapeutic target for myocardial diseases. Circ Res 116(1):138–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langton PF, Kakugawa S, Vincent JP (2016) Making, exporting, and modulating Wnts. Trends Cell Biol. doi:10.1016/j.tcb.2016.05.011

    Google Scholar 

  • Libro R, Bramanti P, Mazzon E (2016) The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci 158:78–88

    Article  CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malekar P, Hagenmueller M, Anyanwu A, Buss S, Streit MR, Weiss CS et al (2010) Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension 55(4):939–945

    Article  CAS  PubMed  Google Scholar 

  • Matsushima K, Suyama T, Takenaka C, Nishishita N, Ikeda K, Ikada Y et al (2010) Secreted frizzled related protein 4 reduces fibrosis scar size and ameliorates cardiac function after ischemic injury. Tissue Eng Part A 16(11):3329–3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maye P, Zheng J, Li L, Wu D (2004) Multiple mechanisms for Wnt11-mediated repression of the canonical Wnt signaling pathway. J Biol Chem 279(23):24659–24665

    Article  CAS  PubMed  Google Scholar 

  • Min JK, Park H, Choi HJ, Kim Y, Pyun BJ, Agrawal V et al (2011) The WNT antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells. J Clin Invest 121(5):1882–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N et al (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104(5):1643–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed TM, Abou-Leisa R, Stafford N, Maqsood A, Zi M, Prehar S et al (2016) The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy. Nat Commun 7:11074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishita Y, Kobayashi K, Klyachko E, Jujo K, Maeda K, Losordo DW et al (2016) Wnt11 gene therapy with adeno-associated virus 9 improves recovery from myocardial infarction by modulating the inflammatory response. Sci Rep 6:21705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motiwala SR, Szymonifka J, Belcher A, Weiner RB, Baggish AL, Gaggin HK et al (2014) Measurement of novel biomarkers to predict chronic heart failure outcomes and left ventricular remodeling. J Cardiovasc Transl Res 7(2):250–261

    Article  PubMed  Google Scholar 

  • Murakoshi M, Saiki K, Urayama K, Sato TN (2013) An anthelmintic drug, pyrvinium pamoate, thwarts fibrosis and ameliorates myocardial contractile dysfunction in a mouse model of myocardial infarction. PLoS One 8(11), e79374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mureli S, Gans CP, Bare DJ, Geenen DL, Kumar NM, Banach K (2013) Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling. Am J Physiol Heart Circ Physiol 304(4):H600–H609

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Sano S, Fuster JJ, Kikuchi R, Shimizu I, Ohshima K et al (2016) Secreted frizzled-related protein 5 diminishes cardiac inflammation and protects the heart from ischemia/reperfusion injury. J Biol Chem 291(6):2566–2575

    Article  CAS  PubMed  Google Scholar 

  • Oerlemans MI, Goumans MJ, van Middelaar B, Clevers H, Doevendans PA, Sluijter JP (2010) Active Wnt signaling in response to cardiac injury. Basic Res Cardiol 105(5):631–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikonomopoulos A, Sereti KI, Conyers F, Bauer M, Liao A, Guan J et al (2011) Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3. Circ Res 109(12):1363–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367(9507):356–367

    Article  PubMed  Google Scholar 

  • Pahnke A, Conant G, Huyer LD, Zhao Y, Feric N, Radisic M (2016) The role of Wnt regulation in heart development, cardiac repair and disease: a tissue engineering perspective. Biochem Biophys Res Commun 473(3):698–703

    Article  CAS  PubMed  Google Scholar 

  • Paik DT, Rai M, Ryzhov S, Sanders LN, Aisagbonhi O, Funke MJ et al (2015) Wnt10b gain-of-function improves cardiac repair by arteriole formation and attenuation of fibrosis. Circ Res 117(9):804–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandur P, Lasche M, Eisenberg LM, Kuhl M (2002) Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418(6898):636–641

    Article  CAS  PubMed  Google Scholar 

  • Pereira C, Schaer DJ, Bachli EB, Kurrer MO, Schoedon G (2008) Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol 28(3):504–510

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Zhou J, Yi XP, Dong B, Zheng H, Miller LM et al (2007) Cardiac-specific haploinsufficiency of beta-catenin attenuates cardiac hypertrophy but enhances fetal gene expression in response to aortic constriction. J Mol Cell Cardiol 43(3):319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO (1997) Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181(1):64–78

    Article  CAS  PubMed  Google Scholar 

  • Riffell JL, Lord CJ, Ashworth A (2012) Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov 11(12):923–936

    Article  CAS  PubMed  Google Scholar 

  • Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61(4):269–280

    Article  CAS  PubMed  Google Scholar 

  • Safholm A, Leandersson K, Dejmek J, Nielsen CK, Villoutreix BO, Andersson T (2006) A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem 281(5):2740–2749

    Article  PubMed  Google Scholar 

  • Saraswati S, Alfaro MP, Thorne CA, Atkinson J, Lee E, Young PP (2010) Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PLoS One 5(11), e15521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Hwang H, Nguyen C, Kloner RA, Kahn M (2013) The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically infarcted rat myocardium. PLoS One 8(9), e75010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulte G, Bryja V (2007) The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci 28(10):518–525

    Article  CAS  PubMed  Google Scholar 

  • Schumann H, Holtz J, Zerkowski HR, Hatzfeld M (2000) Expression of secreted frizzled related proteins 3 and 4 in human ventricular myocardium correlates with apoptosis related gene expression. Cardiovasc Res 45(3):720–728

    Article  CAS  PubMed  Google Scholar 

  • Simons M, Mlodzik M (2008) Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet 42:517–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sklepkiewicz P, Shiomi T, Kaur R, Sun J, Kwon S, Mercer B et al (2015) Loss of secreted frizzled-related protein-1 leads to deterioration of cardiac function in mice and plays a role in human cardiomyopathy. Circ Heart Fail 8(2):362–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staal FJ, Luis TC, Tiemessen MM (2008) WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 8(8):581–593

    Article  CAS  PubMed  Google Scholar 

  • Sugden PH, Fuller SJ, Weiss SC, Clerk A (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol 153(Suppl 1):S137–S153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tao J, Wang YT, Abudoukelimu M, Yang YN, Li XM, Xie X, et al (2016) Association of genetic variations in the Wnt signaling pathway genes with myocardial infarction susceptibility in Chinese Han population. Oncotarget. doi:10.18632/oncotarget.10401

    Google Scholar 

  • Tateishi A, Matsushita M, Asai T, Masuda Z, Kuriyama M, Kanki K et al (2010) Effect of inhibition of glycogen synthase kinase-3 on cardiac hypertrophy during acute pressure overload. Gen Thorac Cardiovasc Surg 58(6):265–270

    Article  PubMed  Google Scholar 

  • Timmers L, Sluijter JP, van Keulen JK, Hoefer IE, Nederhoff MG, Goumans MJ et al (2008) Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res 102(2):257–264

    Article  CAS  PubMed  Google Scholar 

  • Toyofuku T, Hong Z, Kuzuya T, Tada M, Hori M (2000) Wnt/Frizzled-2 signaling induces aggregation and adhesion among cardiac myocytes by increased cadherin-beta-catenin complex. J Cell Biol 150(1):225–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng AS, Engel FB, Keating MT (2006) The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol 13(9):957–963

    Article  CAS  PubMed  Google Scholar 

  • Uitterdijk A, Hermans KC, de Wijs-Meijler DP, Daskalopoulos EP, Reiss IK, Duncker DJ et al (2016) UM206, a selective Frizzled antagonist, attenuates adverse remodeling after myocardial infarction in swine. Lab Invest 96(2):168–176

    Article  CAS  PubMed  Google Scholar 

  • van de Schans VA, van den Borne SW, Strzelecka AE, Janssen BJ, van der Velden JL, Langen RC et al (2007) Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy. Hypertension 49(3):473–480

    Article  PubMed  Google Scholar 

  • van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7(1):30–37

    Article  PubMed  Google Scholar 

  • Wang H, Hao J, Hong CC (2011) Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/beta-catenin signaling. ACS Chem Biol 6(2):192–197

    Article  CAS  PubMed  Google Scholar 

  • Weidinger G, Moon RT (2003) When Wnts antagonize Wnts. J Cell Biol 162(5):753–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng Z, Kong CW, Ren L, Karakikes I, Geng L, He J et al (2014) A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells. Stem Cells Dev 23(14):1704–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woulfe KC, Gao E, Lal H, Harris D, Fan Q, Vagnozzi R et al (2010) Glycogen synthase kinase-3beta regulates post-myocardial infarction remodeling and stress-induced cardiomyocyte proliferation in vivo. Circ Res 106(10):1635–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelarayan LC, Noack C, Sekkali B, Kmecova J, Gehrke C, Renger A et al (2008) Beta-catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation. Proc Natl Acad Sci U S A 105(50):19762–19767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Hao J (2015) Development of anticancer agents targeting the Wnt/beta-catenin signaling. Am J Cancer Res 5(8):2344–2360

    PubMed  PubMed Central  Google Scholar 

  • Zhang CG, Jia ZQ, Li BH, Zhang H, Liu YN, Chen P et al (2009) beta-Catenin/TCF/LEF1 can directly regulate phenylephrine-induced cell hypertrophy and Anf transcription in cardiomyocytes. Biochem Biophys Res Commun 390(2):258–262

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Matthijs Blankesteijn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stylianidis, V., Hermans, K.C.M., Blankesteijn, W.M. (2016). Wnt Signaling in Cardiac Remodeling and Heart Failure. In: Bauersachs, J., Butler, J., Sandner, P. (eds) Heart Failure. Handbook of Experimental Pharmacology, vol 243. Springer, Cham. https://doi.org/10.1007/164_2016_56

Download citation

Publish with us

Policies and ethics