Skip to main content

Assembly and Maintenance of Myofibrils in Striated Muscle

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 235))

Abstract

In this chapter, we present the current knowledge on de novo assembly, growth, and dynamics of striated myofibrils, the functional architectural elements developed in skeletal and cardiac muscle. The data were obtained in studies of myofibrils formed in cultures of mouse skeletal and quail myotubes, in the somites of living zebrafish embryos, and in mouse neonatal and quail embryonic cardiac cells. The comparative view obtained revealed that the assembly of striated myofibrils is a three-step process progressing from premyofibrils to nascent myofibrils to mature myofibrils. This process is specified by the addition of new structural proteins, the arrangement of myofibrillar components like actin and myosin filaments with their companions into so-called sarcomeres, and in their precise alignment. Accompanying the formation of mature myofibrils is a decrease in the dynamic behavior of the assembling proteins. Proteins are most dynamic in the premyofibrils during the early phase and least dynamic in mature myofibrils in the final stage of myofibrillogenesis. This is probably due to increased interactions between proteins during the maturation process. The dynamic properties of myofibrillar proteins provide a mechanism for the exchange of older proteins or a change in isoforms to take place without disassembling the structural integrity needed for myofibril function. An important aspect of myofibril assembly is the role of actin-nucleating proteins in the formation, maintenance, and sarcomeric arrangement of the myofibrillar actin filaments. This is a very active field of research. We also report on several actin mutations that result in human muscle diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal PB, Joshi M, Savic T, Chen Z, Beggs AH (2012) Normal myofibrillar development followed by progressive sarcomeric disruption with actin accumulations in a mouse Cfl2 knockout demonstrates requirement of cofilin-2 for muscle maintenance. Hum Mol Genet 15:2341–2356

    Article  CAS  Google Scholar 

  • Al Haj A, Mazur AJ, Radaszkiewciz K, Radaszkiewicz T, Makowiecka A, Stopschinski BE, Schönichen A, Geyer M, Mannherz HG (2015) Distributions of formins in cardiac muscle: FHOD1 is a component of intercalated discs and costameres. Eur J Cell Biol 94:101–113

    Article  CAS  PubMed  Google Scholar 

  • Almenar-Queralt A, Gregorio CC, Fowler VM (1999) Tropomodulin assembles early in myofibrillogenesis in chick skeletal muscle: evidence that thin filaments rearrange to form striated myofibrils. J Cell Sci 112:1111–1123

    CAS  PubMed  Google Scholar 

  • Aronson J (1961) Sarcomere size in developing muscles of a tarsonemid mite. J Biophys Biochem Cytol 11:147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boczkowska M, Rebowski G, Kremneva E, Lappalainen P, Dominguez R (2015) How Leiomodin and tropomodulin use a common fold for different actin assembly functions. Nat Commun 6:8314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bubb MR, Senderowicz AMJ, Sausville EA, Duncan KLK, Korn ED (1994) Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol 269:14869–14871

    CAS  Google Scholar 

  • Bubb MR, Spector I, Beyer BB, Fosen KM (2000) The effects of jasplakinolide in the kinetics of actin polymerization: an explanation for certain in vivo observations. J Biol Chem 275:5163–5170

    Article  CAS  PubMed  Google Scholar 

  • Cen B, Selvaraj A, Prywes R (2004) Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 93:74–82

    Article  CAS  PubMed  Google Scholar 

  • Cenik BK, Garg A, McAnally JR, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN, Liu N (2015) Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3. J Clin Invest 1254:1569–1578

    Article  Google Scholar 

  • Chalkia D, Nikolaidis N, Makalowski W, Klein J, Nei M (2008) Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol Biol Evol 2512:2717–2733

    Article  CAS  Google Scholar 

  • Chereau D, Boczkowska M, Skwarek-Maruszewska A, Fujiwara I, Hayers DB, Rebowski G, Lappalainen P, Pollard TD, Dominguez R (2008) Leiomodin is an actin filament nucleator in muscle cells. Science 320:239–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark WA Jr, Zak R (1981) Assessment of fractional rates of protein synthesis in cardiac muscle cultures after equilibrium labeling. J Biol Chem 256:4863–4870

    CAS  PubMed  Google Scholar 

  • Conley CA, Fritz-Six KL, Almenar-Queralt A, Fowler VM (2001) Leiomodins: larger members of the Tropomodulin Tmod gene family. Genomics 73:127–139

    Article  CAS  PubMed  Google Scholar 

  • Copeland JW, Treisman R (2002) The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol Biol Cell 13:4088–4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crick FHC (1977) Developmental biology. In: Duncan R, Weston Smith M (eds) The encyclopedia of ignorance: everything you ever wanted to know about the unknown. Pergamon Press, Oxford, pp 299–303

    Google Scholar 

  • Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW (1997) Myofibrillogenesis in living embryonic cardiomyocytes. Proc Natl Acad Sci U S A 94:9493–9498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danowski BA, Imanaka-Yoshida K, Sanger JM, Sanger JW (1992) Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. J Cell Biol 118(1411-1420):1992

    Google Scholar 

  • Davies T, Jordan SN, Cand V, Sees JA, Laband K, Carvalho AX, Shirasu-Hiza M, Kovar DR, Dumont J, Canman JC (2014) High-resolution temporal analysis reveals a functional timeline for the molecular regulation of cytokinesis. Dev Cell 302:209–223

    Article  CAS  Google Scholar 

  • Devin RB, Emerson CP Jr (1978) Coordinate regulation of contractile protein synthesis during myoblast differentiation. Cell 13:599–611

    Article  Google Scholar 

  • Devin RB, Emerson CP Jr (1979) Coordinate accumulation of contractile protein mRNAs during myoblast differentiation. Dev Biol 69:202–216

    Article  Google Scholar 

  • Dlugosz AA, Antin PB, Nachmias VT, Holtzer H (1984) The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol 99:2268–2278

    Article  CAS  PubMed  Google Scholar 

  • Du A, Sanger JM, Linask KK, Sanger JW (2003) Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. Dev Biol 257:382–394

    Article  CAS  PubMed  Google Scholar 

  • Du A, Sanger JM, Sanger JW (2008) Cardiac myofibrillogenesis inside intact embryonic hearts. Dev Biol 318:236–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duygu S (2015) Severe congenital actin related myopathy with myofibrillar myopathy features. Neuromuscul Disord 25:488–492

    Article  Google Scholar 

  • Dwyer J, Pluess M, Iskratsch T, dos Remedios CG, Ehler E (2014) The formin FHOD1 in cardiomyocytes. Anat Rec 297:1560–1570

    Article  CAS  Google Scholar 

  • Ervasti JM (2003) Costameres: the Achilles’ heel of Herculean muscle. J Biol Chem 23716:13591–13594

    Article  CAS  Google Scholar 

  • Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A (2002) Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 41:32–41

    Article  Google Scholar 

  • Falcone S, Roman W, Hnia K, Gache V, Didier N, Lainé J, Auradé F, Marty I, Nishino I, Charlet-Berguerand N, Romero NB, Marazzi G, Sassoon D, Laporte J, Gomes EF (2014) N-WASP is required for Amphiphysin-2/BIN1-dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy. EMBO Mol Med 611:1455–1475

    Article  CAS  Google Scholar 

  • Golson ML, Sanger JM, Sanger JW (2004) Inhibitors arrest myofibrillogenesis in skeletal muscle cells at early stages of assembly. Cell Motil Cytoskeleton 59:1–16

    Article  CAS  PubMed  Google Scholar 

  • Goode BL, Eck MJ (2007) Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 76:593–627

    Article  CAS  PubMed  Google Scholar 

  • Haeggqvist G (1920) Ueber die Entwicklung der querstreifigen Myofibrillen beim Frosche. Anat Anz 52:389–404

    Google Scholar 

  • Hagiwara A, Tanaka Y, Hikawa R, Morone N, Kusumi A, Kimura H, Kinoshita M (2011) Submembranousseptins as relatively stable components of actin-based membrane skeleton. Cytoskeleton 68:512–525

    Article  CAS  PubMed  Google Scholar 

  • Higgs HN, Peterson KJ (2005) Phylogenetic analysis of the Formin Homology 2 domain. Mol Biol Cell 16:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308

    Article  CAS  PubMed  Google Scholar 

  • Iskratsch T, Lange S, Dwyer J, Kho AL, dos Remedios C, Ehler E (2010) Formin follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance. J Cell Biol 1916:1159–1172

    Article  CAS  Google Scholar 

  • Kanaya H, Takeya R, Takeuchi K, Watanabe N, Jing N, Sumimoto H (2005) Fhos2, a novel formin-related actin-organizing protein, probably associates with the nestin intermediate filament. Genes Cells 10:665–678

    Article  CAS  PubMed  Google Scholar 

  • Kan-o M, Takeya R, Abe T, Kitajima N, Nishida M, Tominaga R, Kurose H, Sumimoto H (2012a) Mammalian Fhod3 plays an essential role in cardiogenesis by organizing myofibrillogenesis. Biol Open 19:889–896

    Article  CAS  Google Scholar 

  • Kan-o M, Takeya R, Taniguchi K, Tanoue Y, Tominaga R, Sumimoto H (2012b) Expression and subcellular localization of mammalian formin Fhod3 in the embryonic and adult heart. PLoS One 74, e34765

    Article  CAS  Google Scholar 

  • Kovar DR, Pollard TD (2004) Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc Natl Acad Sci U S A 10141:14725–14730

    Article  Google Scholar 

  • Kovar DR, Kuhn JR, Tichy AJ, Pollard TD (2003) The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J Cell Biol 1615:875–887

    Article  CAS  Google Scholar 

  • Krainer EC, Ouderkirk JL, Miller EW, Miller MR, Mersich AT, Blystone SD (2013) The multiplicity of human formins: expression patterns in cells and tissues. Cytoskeleton 70:424–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier N, Lillis S, Winder TL, Lochmuller H, Graziano C, Mitrani-Rosenbaum S, Twomey D, Sparrow JC, Beggs A, Nowak K (2009) Mutations and polymorphisms of the skeletal muscle alpha-actin gene acta1. Hum Mutat 30:1267–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Hallett MA, Zhu W, Rubart M, Liu Y, Yang Z, Chen H, Haneline LS, Chan RJ, Schwartz RJ, Field LJ, Atkinson SJ, Shou W (2011) Dishevelled-associated activator of morphogenesis 1 Daam1 is required for heart morphogenesis. Development 138:303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Littlefield RS, Fowler VM (2008) Thin filament length regulation in striated muscle sarcomeres: pointed-end dynamics go beyond a nebulin ruler. Semin Cell Dev Biol 196:511–519

    Article  CAS  Google Scholar 

  • LoRusso SM, Imanaka-Yoshida K, Shuman H, Sanger JM, Sanger JW (1992) Incorporation of fluorescently labeled contractile proteins into freshly isolated living adult cardiac myocytes. Cell Motil Cytoskeleton 21:111–122

    Article  CAS  PubMed  Google Scholar 

  • LoRusso SM, Rhee D, Sanger JM, Sanger JW (1997) Premyofibrils in spreading adult cardiomyocytes in tissue culture: evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells. Cell Motil Cytoskeleton 37:183–198

    Article  CAS  PubMed  Google Scholar 

  • Miller JB, Stockdale FE (1986) Developmental regulation of the multiple myogenic cell lineages of the avian embryo. J Cell Biol 103:2197–2208

    Article  CAS  PubMed  Google Scholar 

  • Millevoi S, Trombitas K, Kolmerer B, Kostin S, Schaper J, Pelin K, Granzier H, Labeit S (1998) Characterization of nebulette and nebulin and emerging concepts of their roles for vertebrate Z-Discs. J Mol Biol 282:111–123

    Article  CAS  PubMed  Google Scholar 

  • Mi-Mi L, Pruyne D (2015) Loss of sarcomere-associated formins disrupts Z-line organization, but does not prevent thin filament assembly in Caenorhabditis elegans muscle. J Cytol Histol 62:318

    Google Scholar 

  • Mi-Mi L, Votra S, Kemphues K, Bretscher A, Pruyne D (2012) Z-line formins promote contractile lattice growth and maintenance in striated muscles of C. elegans. J Cell Biol 1981:87–102

    Article  CAS  Google Scholar 

  • Minamide LS, Maiti S, Boyle JA, Davis RC, Coppinger JA, Bao Y, Huang TY, Yates J, Bokoch GM, Bamburg JR (2010) Isolation and characterization of cytoplasmic cofilin-actin rods. J Biol Chem 285:5450–5460

    Article  CAS  PubMed  Google Scholar 

  • Miralles F, Posern G, Zaromytidou A-I, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342

    Article  CAS  PubMed  Google Scholar 

  • Molnár I, Migh E, Szikora S, Kalmár T, Végh AG, Deák F, Barkó S, Bugyi B, Orfanos Z, Kovács J, Juhász G, Váró G, Nyitrai M, Sparrow J, Mihály J (2014) DAAM is required for thin filament formation and sarcomerogenesis during muscle development in Drosophila. PLoS Genet 102, e1004166

    Article  CAS  Google Scholar 

  • Morton WM, Ayscough KR, McLaughlin PJ (2000) Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat Cell Biol 22:376–378

    Google Scholar 

  • Moseley JB, Sagot I, Manning AL, Xu Y, Eck MJ, Pellman D, Goode BL (2004) A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Mol Biol Cell 15:896–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda V, Miano JM (2012) Leiomodin 1, a new serum response factor-dependent target gene expressed preferentially in differentiated smooth muscle cells. J Biol Chem 2874:2459–2467

    Article  CAS  Google Scholar 

  • Nowak KJ, Ravenscroft G, Jackaman C, Filipovska A, Davies SM, Lim EM, Squire SE, Potter AC, Baker E, Clément S, Sewry CA, Fabian V, Crawford K, Lessard JL, Griffiths LM, Papadimitriou JM, Shen Y, Morahan G, Bakker AJ, Davies KE, Laing NG (2009) Rescue of skeletal muscle alpha-actin-null mice by cardiac fetal alpha-actin. J Cell Biol 185:903–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak KJ, Ravenscroft G, Laing NG (2013) Skeletal muscle α-actin diseases actinopathies: pathology and mechanisms. Acta Neuropathol 125:19–32

    Google Scholar 

  • Nworu CU, Kraft R, Schnurr DC, Gregorio CC, Krieg PA (2015) Leiomodin 3 and tropomodulin 4 have overlapping functions during skeletal morphogenesis. J Cell Sci 128:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochala J, Ravencroft G, McNamara E, Nowak KJ, Iwamoto H (2009) X-ray recordings reveal how a human disease-linked skeletal muscle α-actin mutation leads to contractile dysfunction. J Struct Biol 192(3):331–335

    Article  CAS  Google Scholar 

  • Ono S (2010) Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton 67:677–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappas CT, Krieg PA, Gregorio CC (2010) Nebulin regulates actin filament lengths by a stabilization mechanism. J Cell Biol 189:859–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappas CT, Mayfield RM, Henderson C, Jamilpour N, Cover C, Hernandez Z, Hutchinso KR, Chu M, Nam K-H, Valdez JM, Wong PK, Granzier HL, Gregorio CC (2015) Knockout of Lmod2 results in shorter thin filaments followed by dilated cardiomyopathy and juvenile lethality. Proc Natl Acad Sci U S A 112:13573–13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul A, Pollard T (2008) The role of the FH1 domain and profilin in formin-mediated actin-filament elongation and nucleation. Curr Biol 18:9–19

    Article  CAS  PubMed  Google Scholar 

  • Piccirillo R, Demontis F, Perrimon N, Goldberg AL (2014) Mechanisms of muscle growth and atrophy in mammals and Drosophila. Dev Dyn 243:201–215

    Article  PubMed  Google Scholar 

  • Pollard TD (1984) Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol 103:2747–2754

    Article  Google Scholar 

  • Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297:612–615

    Article  CAS  PubMed  Google Scholar 

  • Quach N, Rando TA (2006) Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol 293:38–52

    Article  CAS  PubMed  Google Scholar 

  • Rhee D, Sanger JM, Sanger JW (1994) The premyofibrils: evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton 28:1–24

    Article  CAS  PubMed  Google Scholar 

  • Rizvi SA, Neidt EM, Cui J, Feiger Z, Skau CT, Gardel ML, Kozmin SA, Kovar DR (2009) Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. Chem Biol 1611:1158–1168

    Article  CAS  Google Scholar 

  • Romero S, Le Clainche C, Didry D, Egile C, Pantaloni D, Carlier M-F (2004) Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119:419–429

    Article  CAS  PubMed  Google Scholar 

  • Rosado M, Barber CF, Berciu C, Feldman S, Birren SJ, Nicastro D, Goode BL (2014) Critical roles for multiple formins during cardiac myofibril development and repair. Mol Biol Cell 25:811–827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubinstein PA, Wen K (2014) Insights into the effects of disease-causing mechanisms in human actins. Cytoskeleton 71:211–229

    Article  CAS  Google Scholar 

  • Sagot I, Klee SK, Pellman D (2002a) Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 48:42–50

    Google Scholar 

  • Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D (2002b) An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 48:626–631

    Google Scholar 

  • Sanger JM, Sanger JW (1980) Banding and polarity of actin filaments in interphase and cleaving cells. J Cell Biol 86:568–575

    Article  CAS  PubMed  Google Scholar 

  • Sanger JM, Sanger JW (2008) The dynamic Z-bands of striated muscle cells. Sci Signal 1:37

    Article  Google Scholar 

  • Sanger JM, Sanger JW (2014) Recent advances in muscle research. Anat Record 297:1539–1542

    Article  Google Scholar 

  • Sanger JW, Sanger JM, Jockusch BM (1983) Differences in the stress fibers between fibroblasts and epithelial cells. J Cell Biol 96:1–969

    Article  Google Scholar 

  • Sanger JM, Mittal B, Sanger JW (1984) Formation of myofibrils in spreading chick cardiac myocytes. Cell Motil 4:405–416

    Article  CAS  PubMed  Google Scholar 

  • Sanger JM, Mittal B, Pochapin MB, Sanger JW (1986a) Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin. J Cell Biol 102:2053–2066

    Article  CAS  PubMed  Google Scholar 

  • Sanger JM, Mittal B, Pochapin MB, Sanger JW (1986b) Observations of microfilament bundles in living cells microinjected with fluorescently labeled contractile proteins. J Cell Sci Suppl 5:17–44

    Article  CAS  PubMed  Google Scholar 

  • Sanger JM, Mittal B, Meyer TW Jr, Sanger JW (1989) Use of fluorescent probes to study myofibrillogenesis. In: Stockdale F, Kedes L (eds) Cellular and molecular biology of muscle development. Alan R. Liss, Inc., New York, pp 221–235

    Google Scholar 

  • Sanger JM, Dabiri G, Mittal B, Kowalski MA, Haddad JG, Sanger JW (1990) Disruption of microfilament organization in living non-muscle cells by microinjection of Vitamin-D binding protein or DNAase I. Proc Natl Acad Sci U S A 87:5474–5478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger JW, Sanger JM, Franzini-Armstrong C (2004) Assembly of the skeletal muscle cell. In: Engel AG, Franzini-Armstrong C (eds) Myology, 3rd edn. McGraw-Hill, New York, pp 45–65

    Google Scholar 

  • Sanger JW, Kang S, Siebrands CC, Freeman N, Du A, Wang J, Stout AL, Sanger JM (2006) How to build a myofibril. J Muscle Res Cell Motil 26:343–354

    Article  Google Scholar 

  • Sanger JW, Wang J, Holloway B, Du A, Sanger JM (2009) Myofibrillogenesis in skeletal muscle cells in zebrafish. Cell Motil Cytoskeleton 66:556–566

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanger JW, Wang J, Fan Y, White J, Sanger JM (2010) Assembly and dynamics of myofibrils. J Biomed Biotechnol 2010. Article ID 858606, 8 pages. www.hindawi.com/journals/jbb/2010/858606.html

  • Schaller R, Feldman K, Smith P, Tervoort TA (2015) High-performance polyethylene fibers “Al Dente”: improved gel- spinning of ultrahigh molecular weight polyethylene using vegetable oils. Macromolecules 48:8877–8884

    Article  CAS  Google Scholar 

  • Schönichen A, Mannherz HG, Behrmann E, Mazur AJ, Kühn S, Silván U, Schoenenberger C-A, Fackler OT, Raunser S, Dehmelt L, Geyer M (2013) FHOD1 is a combined actin filament capping and bundling factor that selectively associates with actin arcs and stress fibers. J Cell Sci 126:1891–1901

    Article  PubMed  CAS  Google Scholar 

  • Selcen D (2015) Severe congenital actin related myopathy with myofibrillar myopathy features. Neuromuscul Disord 25:488–492

    Article  PubMed  Google Scholar 

  • Skwarek-Maruszewska A, Boczkowska M, Zajac AL, Kremneva E, Scitkina T, Dominguez R, Lappalainen P (2010) Different localizations and cellular behaviors of Leiomodin and Tropomodulin in mature cardiomyocyte sarcomeres. Mol Biol Cell 21:3352–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparrow JC, Nowak KJ, Durling HJ, Beggs AH, Wallgren-Pettersson C, Romero N, Nonaka I, Laing NG (2003) Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscul Disord 13:519–531

    Article  PubMed  Google Scholar 

  • Staus DP, Blaker AL, Taylor JM, Mack CP (2007) Diaphanous 1 and 2 regulate smooth muscle cell differentiation by activating the myocardin-related transcription factors. Arterioscler Thromb Vasc Biol 27:478–486

    Article  CAS  PubMed  Google Scholar 

  • Staus DP, Blaker AL, Medlin MD, Taylor JM, Mack CP (2011) Formin homology domain-containing protein 1 regulates smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 31:360–367

    Article  CAS  PubMed  Google Scholar 

  • Stout AL, Wang J, Sanger JM, Sanger JW (2008) Tracking changes in Z-band organization during myofibrillogenesis with FRET imaging. Cell Motil Cytoskeleton 65:353–367

    Article  CAS  PubMed  Google Scholar 

  • Sztal TE, Zhao M, Williams C, Oorschot V, Parslow AC, Giousoh A, Yuen M, Hall TE, Costin A, Ramm G, Bird PI, Busch-Nentwich EM, Stemple DL, Currie PD, Cooper ST, Laing NG, Nowak KJ, Bryson-Richardson RJ (2015) Zebra models for nemaline myopathy reveal a spectrum of nemaline bodies contributing to reduce muscle function. Acta Neuropathol 13:389–406

    Article  Google Scholar 

  • Takano K, Watanabe-Takano H, Suetsugu S, Kurita S, Tsujita K, Kimura S, Karatsu T, Takenawa T, Endo T (2010) Nebulin and N-WASP cooperate to cause IGF-1-induced sarcomeric actin filament formation. Science 330:1536–1540

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi K, Takeya R, Suetsugu S, Kan-o M, Narusawa M, Shiose A, Tominaga R, Sumimoto H (2009) The mammalian formin Fhod3 regulates actin assembly and sarcomere organization in striated muscles. J Biol Chem 28443:29873–29881

    Article  CAS  Google Scholar 

  • Tian L, Ding S, You Y, Li T-R, Liu Y, Wu X, Sun L, Xu T (2015) Leiomodin-3-deficient mice display nemaline myopathy with fast-myofiber atrophy. Dis Model Mech 8:635–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga T, Sahai E, Chardin P, McCormick F, Courtneidge SA, Alberts AS (2000) Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol Cell 51:13–25

    Article  Google Scholar 

  • Tsuji T, Miyoshi T, Higashida C, Narumiya S, Watanabe N (2009) An order of magnitude faster AIP1-Associated actin disruption than nucleation by the Arp2/3 complex in lamellipodia. PLoS One 4, e4921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsukada T, Pappas CT, Moroz N, Antin PB, Kostyukova AS, Gregorio CC (2010) Leiomodin-2 is an antagonist of tropomodulin-1 at the pointed end of the thin filaments in cardiac muscle. J Cell Sci 123:3136–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnacioglu KK, Mittal B, Dabiri G, Sanger JM, Sanger JW (1997) An N-terminal fragment of titin coupled to green fluorescent protein localizes to the Z-bands in living muscle cells: overexpression leads to myofibril disassembly. Mol Biol Cell 8:705–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandekerckhove J, Bugaisky G, Buckingham M (1986) Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. A quantitative determination of the two actin isoforms. J Biol Chem 261:1838–1843

    CAS  PubMed  Google Scholar 

  • Wachsberger P, Lampson L, Pepe FA (1983) Non-uniform staining of myofibril A-Bands by a monoclonal antibody to skeletal muscle S1 heavy chain. Tissue Cell 15(3):341–349

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Shaner NC, Mittal B, Zhou Q, Chen J, Sanger JM, Sanger JW (2005a) Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motil Cytoskeleton 61:34–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Sanger JM, Sanger JW (2005b) Differential effects of latrunculin-A on myofibrils in cultures of skeletal muscle cells: Insights into mechanisms of myofibrillogenesis. Cell Motil Cytoskeleton 62:35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Sanger JM, Kang S, Thurston H, Abbott LZ, Dube DK, Sanger JW (2007) Ectopic expression and dynamics of TPM1alpha and TPM1kappa in myofibrils of avian myotubes. Cell Motil Cytoskeleton 64:767–776

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Thurston H, Essandoh E, Otoo M, Han M, Rajan A, Dube S, Zajdel RW, Sanger JM, Linask KK, Dube DK, Sanger JW (2008) Tropomyosin expression and dynamics in developing avian embryonic muscles. Cell Motil Cytoskeleton 65:379–392

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Fan Y, Dube DK, Sanger JM, Sanger JW (2014) Jasplakinolide reduces actin and tropomyosin dynamics during myofibrillogenesis. Cytoskeleton (Hoboken) 71(9):513–529

    Article  CAS  Google Scholar 

  • White J, Barro MV, Makarenkova HP, Sanger JW, Sanger JM (2014) Localization of sarcomeric proteins during myofibril assembly in cultured mouse primary skeletal myotubes. Anat Record 297:1571–1584

    Article  CAS  Google Scholar 

  • Witt CC, Burkart C, Labeit D, McNabb M, Wu Y, Granzier H, Labeit S (2006) Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J 25:3843–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wooten EC, Hebl VB, Wolf MJ, Greytak SR, Orr NM, Draper I, Calvino JE, Kapur NK, Maron MS, Kullo IJ, Ommen SR, Bos JM, Ackerman MJ, Huggins GS (2013) Formin homology 2 domain containing 3 variants associated with hypertrophic cardiomyopathy. Circ Cardiovasc Genet 6:10–18

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto DL, Vitiello C, Zhang J, Gokhin DS, Castaldi A, Coulis G, Piaser F, Filomena MC, Eggenhuizen PJ, Kunderfranco P, Camerini S, Takano K, Endo T, Crescenzi M, Luther PKL, Lieber RL, Chen J, Bang M-L (2013) The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse. J Cell Sci 126:5477–5489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N, Quinlan KG, Lehtokari V-L, Ravenscroft G, Todd EJ, Ceyhan-Birsoy O, Gokhin DS, Maluenda J, Lek M, Nolent F, Pappas CT, Novak SM, D’Amico A, Malfatti E, Thomas BP, Gabriel SB, Gupta M, Daly MJ, Ilkoviski B, Houweling PJ, Davidson AE, Swanson LC, Brownstein CA, Gupta VA, Medne L, Shannon P, Martin N, Bick DP, Flisberg A, Holberg E, Van den Bergh P, Lapunzina P, Waddell LB, Sloboda DD, Bertini E, Chitayat D, Telfer WR, Laquerrière A, Gregorio CC, Ottenheijm CAC, Bönnemann CG, Pelin K, Beggs AH, Hayashi YK, Romero NB, Laing NG, Nishino I, Wallgren-Pettersson C, Melki J, Fowler VM, MacArthur DG, North KN, Clarke NF (2014) Leimodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J Clin Invest 12411:4693–4708

    Article  CAS  Google Scholar 

  • Zigmond SH, Evangelista M, Boone C, Yang C, Dar AC, Pring M (2003) Formin leaky cap allows elongation in the presence of tight capping proteins. Curr Biol 13:1820–1823

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph W. Sanger or David Pruyne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sanger, J.W. et al. (2016). Assembly and Maintenance of Myofibrils in Striated Muscle. In: Jockusch, B. (eds) The Actin Cytoskeleton. Handbook of Experimental Pharmacology, vol 235. Springer, Cham. https://doi.org/10.1007/164_2016_53

Download citation

Publish with us

Policies and ethics