Skip to main content

Anti-Inflammatory and Insulin-Sensitizing Effects of Free Fatty Acid Receptors

  • Chapter
  • First Online:
Free Fatty Acid Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 236))

Abstract

Chronic low-grade inflammation in macrophages and adipose tissues can promote the development of obesity and type 2 diabetes. Free fatty acids (FFAs) have important roles in various tissues, acting as both essential energy sources and signaling molecules. FFA receptors (FFARs) can modulate inflammation in various types of cells and tissues; however the underlying mechanisms mediating these effects are unclear. FFARs are activated by specific FFAs; for example, GPR40 and GPR120 are activated by medium and long chain FFAs, GPR41 and GPR43 are activated by short chain FFAs, and GPR84 is activated by medium-chain FFAs. To date, a number of studies associated with the physiological functions of G protein-coupled receptors (GPCRs) have reported that these GPCRs are expressed in various tissues and involved in inflammatory and metabolic responses. Thus, the development of selective agonists or antagonists for various GPCRs may facilitate the establishment of novel therapies for the treatment of various diseases. In this review, we summarize current literature describing the potential of GPCRs as therapeutic targets for inflammatory and metabolic disorders.

Author Contributions: All authors contributed equally to the preparation of the manuscript.

Conflict of Interest: The authors declare no conflict of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bouchard C et al (2007) G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions. Glia 55(8):790–800

    Article  PubMed  Google Scholar 

  • Briscoe CP et al (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278(13):11303–11311

    Article  CAS  PubMed  Google Scholar 

  • Brown AJ et al (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13):11312–11319

    Article  CAS  PubMed  Google Scholar 

  • da Oh Y et al (2014) A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med 20(8):942–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • den Besten G et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  Google Scholar 

  • Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11(2):98–107

    Article  CAS  PubMed  Google Scholar 

  • Donohoe DR et al (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13(5):517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facchini FS et al (2001) Insulin resistance as a predictor of age-related diseases. J Clin Endocrinol Metab 86(8):3574–3578

    Article  CAS  PubMed  Google Scholar 

  • Fujita T et al (2011) A GPR40 agonist GW9508 suppresses CCL5, CCL17, and CXCL10 induction in keratinocytes and attenuates cutaneous immune inflammation. J Invest Dermatol 131(8):1660–1667

    Article  CAS  PubMed  Google Scholar 

  • Fukuda S et al (2013) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331):543–547

    Article  Google Scholar 

  • Galisteo M, Duarte J, Zarzuelo A (2008) Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J Nutr Biochem 19(2):71–84

    Article  CAS  PubMed  Google Scholar 

  • Gao Z et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21(1):90–113

    Article  CAS  PubMed  Google Scholar 

  • Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Ichimura A, Hirasawa A (2014) Therapeutic role and ligands of medium- to long-chain fatty acid receptors. Front Endocrinol (Lausanne) 5:83

    Google Scholar 

  • Harig JM et al (1989) Treatment of diversion colitis with short-chain-fatty acid irrigation. N Engl J Med 320(1):23–28

    Article  CAS  PubMed  Google Scholar 

  • Hudson BD et al (2013) Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor. J Biol Chem 288(24):17296–17312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura A et al (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483(7389):350–354

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y et al (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422(6928):173–176

    Article  CAS  PubMed  Google Scholar 

  • Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846

    Article  CAS  PubMed  Google Scholar 

  • Kim MH et al (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145(2):396–406

    Article  CAS  PubMed  Google Scholar 

  • Kimura I et al (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A 108(19):8030–8035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura I et al (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotarsky K et al (2003) A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun 301(2):406–410

    Article  CAS  PubMed  Google Scholar 

  • Lattin JE et al (2008) Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Res 4:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Poul E et al (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278(28):25481–25489

    Article  PubMed  Google Scholar 

  • Maslowski KM et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masui R et al (2013) G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm Bowel Dis 19(13):2848–2856

    Article  PubMed  Google Scholar 

  • McNelis JC et al (2015) GPR43 potentiates β-cell function in obesity. Diabetes 64(9):3203–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto J et al (2015) A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J Biol Chem 290(5):2902–2918

    Article  CAS  PubMed  Google Scholar 

  • Morari J et al (2010) The role of proliferator-activated receptor gamma coactivator-1alpha in the fatty-acid-dependent transcriptional control of interleukin-10 in hepatic cells of rodents. Metabolism 59(2):215–223

    Article  CAS  PubMed  Google Scholar 

  • Nagasaki H et al (2012) Inflammatory changes in adipose tissue enhance expression of GPR84, a medium-chain fatty acid receptor: TNFα enhances GPR84 expression in adipocytes. FEBS Lett 586(4):368–372

    Article  CAS  PubMed  Google Scholar 

  • Nilsson NE (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 303(4):1047–1052

    Article  CAS  PubMed  Google Scholar 

  • Oh DY et al (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142(5):687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira V et al (2015) Diets containing α-linolenic (ω3) or oleic (ω9) fatty acids rescues obese mice from insulin resistance. Endocrinology 156(11):4033–4046

    Article  CAS  PubMed  Google Scholar 

  • Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18(3):363–374

    Article  CAS  PubMed  Google Scholar 

  • Park J et al (2015) Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 8(1):80–93

    Article  CAS  PubMed  Google Scholar 

  • Parker HE et al (2009) Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52(2):289–298

    Article  CAS  PubMed  Google Scholar 

  • Pivovarova O et al (2015) Regulation of nutrition-associated receptors in blood monocytes of normal weight and obese humans. Peptides 65:12–19

    Article  CAS  PubMed  Google Scholar 

  • Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15(9):813–827

    Article  CAS  PubMed  Google Scholar 

  • Seidell JC (2000) Obesity, insulin resistance and diabetes—a worldwide epidemic. Br J Nutr 83(Suppl 1):S5–S8

    CAS  PubMed  Google Scholar 

  • Sina C et al (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 183(11):7514–7522

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H et al (2006) Lower weight gain and higher expression and blood levels of adiponectin in rats fed medium-chain TAG compared with long-chain TAG. Lipids 41(2):207–212

    Google Scholar 

  • Tazoe H et al (2009) Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 30(3):149–156

    Article  CAS  PubMed  Google Scholar 

  • Tolhurst G et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita T et al (2014) The G-protein-coupled long-chain fatty acid receptor GPR40 and glucose metabolism. Front Endocrinol (Lausanne) 5:152

    Google Scholar 

  • Trompette A et al (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Turner N et al (2009) Enhancement of muscle mitochondrial oxidative capacity and alterations in insulin action are lipid species dependent: potent tissue-specific effects of medium-chain fatty acids. Diabetes 58(11):2547–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkataraman C, Kuo F (2005) The G-protein coupled receptor, GPR84 regulates IL-4 production by T lymphocytes in response to CD3 crosslinking. Immunol Lett 101(2):144–153

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2006) Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281(45):34457–34464

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2015) Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway. Sci Rep 5:12676

    Google Scholar 

  • Wein S et al (2009) Medium-chain fatty acids ameliorate insulin resistance caused by high-fat diets in rats. Diabetes Metab Res Rev 25(2):185–194

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y et al (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 101(4):1045–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefi S et al (2001) Cloning and expression analysis of a novel G-protein-coupled receptor selectively expressed on granulocytes. J Leukoc Biol 69(6):1045–1052

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miyamoto, J., Kasubuchi, M., Nakajima, A., Kimura, I. (2016). Anti-Inflammatory and Insulin-Sensitizing Effects of Free Fatty Acid Receptors. In: Milligan, G., Kimura, I. (eds) Free Fatty Acid Receptors. Handbook of Experimental Pharmacology, vol 236. Springer, Cham. https://doi.org/10.1007/164_2016_47

Download citation

Publish with us

Policies and ethics