Skip to main content

Key Questions for Translation of FFA Receptors: From Pharmacology to Medicines

  • Chapter
  • First Online:
Free Fatty Acid Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 236))

Abstract

The identification of fatty acids as ligands for the G-protein coupled free fatty acid (FFA) receptor family over 10 years ago led to intensive chemistry efforts to find small-molecule ligands for this class of receptors. Identification of potent, selective modulators of the FFA receptors and their utility in medicine has proven challenging, in part due to their complex pharmacology. Nevertheless, ligands have been identified that are sufficient for exploring the therapeutic potential of this class of receptors in rodents and, in the case of FFA1, FFA2, FFA4, and GPR84, also in humans. Expression profiling, the phenotyping of FFA receptor knockout mice, and the results of studies exploring the effects of these ligands in rodents have uncovered a number of indications where engagement of one or a combination of FFA receptors might provide some clinical benefit in areas including diabetes, inflammatory bowel syndrome, Alzheimer’s, pain, and cancer. In this chapter, we will review the clinical potential of modulating FFA receptors based on preclinical and in some cases clinical studies with synthetic ligands. In particular, key aspects and challenges associated with small-molecule ligand identification and FFA receptor pharmacology will be addressed with a view of the hurdles that need to be overcome to fully understand the potential of the receptors as therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ang Z, Ding JL (2016) GPR41 and GPR43 in obesity and inflammation – protective or causative? Front Immunol 7:28. doi:10.3389/fimmu.2016.00028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Apple FS, Wu AH, Mair J, Ravkilde J, Panteghini M, Tate J, Pagani F, Christenson RH, Mockel M, Danne O, Jaffe AS, Committee on Standardization of Markers of Cardiac Damage of the IFCC (2005) Future biomarkers for detection of ischemia and risk stratification in acute coronary syndrome. Clin Chem 51:810–824. doi:10.1373/clinchem.2004.046292

    Article  CAS  PubMed  Google Scholar 

  • Audoy-Rémus J, Bozoyan L, Dumas A, Filali M, Lecours C, Lacroix S, Rivest S, Tremblay ME, Vallières L (2015) GPR84 deficiency reduces microgliosis, but accelerates dendritic degeneration and cognitive decline in a mouse model of Alzheimer’s disease. Brain Behav Immun 46:112–120. doi:10.1016/j.bbi.2015.01.010

    Article  PubMed  CAS  Google Scholar 

  • Araki T, Hirayama M, Hiroi S, Kaku K (2012) GPR40-induced insulin secretion by the novel agonist TAK-875: first clinical findings in patients with type 2 diabetes. Diabetes Obes Metab 14(3):271–278. doi:10.1111/j.1463-1326.2011.01525.x

    Article  CAS  PubMed  Google Scholar 

  • Azzazy HM, Pelsers MM, Christenson RH (2006) Unbound free fatty acids and heart-type fatty acid-binding protein: diagnostic assays and clinical applications. Clin Chem 52:19–29. doi:10.1373/clinchem.2005.056143

    Article  CAS  PubMed  Google Scholar 

  • Baer DJ, Judd JT, Clevidence BA, Tracy RP (2004) Dietary fatty acids affect plasma markers of inflammation in healthy men fed controlled diets: a randomized crossover study. Am J Clin Nutr 79:969–973

    CAS  PubMed  Google Scholar 

  • Bellahcene M, O’Dowd JF, Wargent ET, Zaibi MS, Hislop DC, Ngala RA, Smith DM, Cawthorne MA, Stocker CJ, Arch JR (2013) Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br J Nutr 109:1755–1764. doi:10.1017/S0007114512003923

    Article  CAS  PubMed  Google Scholar 

  • Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590

    CAS  PubMed  Google Scholar 

  • Bjursell M, Admyre T, Göransson M, Marley AE, Smith DM, Oscarsson J, Bohlooly-Y M (2011) Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 300:E211–E220. doi:10.1152/ajpendo.00229.2010

    Article  CAS  PubMed  Google Scholar 

  • Bjursell M, Xu X, Admyre T, Böttcher G, Lundin S, Nilsson R, Stone VM, Morgan NG, Lam YY, Storlien LH, Lindén D, Smith DM, Bohlooly-Y M, Oscarsson J (2014) The beneficial effects of n-3 polyunsaturated fatty acids on diet induced obesity and impaired glucose control do not require Gpr120. PLoS One 9, e114942. doi:10.1371/journal.pone.0114942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bloemen JG, Venema K, van de Poll MC, Olde Damink SW, Buurman WA, Dejong CH (2009) Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin Nutr 28:657–661. doi:10.1016/j.clnu.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  • Burant CF, Viswanathan P, Marcinak J, Cao C, Vakilynejad M, Xie B, Leifke E (2012) TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379(9824):1403–1411. doi:10.1016/S0140-6736(11)61879-5

    Article  CAS  PubMed  Google Scholar 

  • Burant CF (2013) Activation of GPR40 as a therapeutic target for the treatment of type 2 diabetes. Diabetes Care 36(Suppl 2):S175–S179. doi:10.2337/dcS13-2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasky TM, Darke AK, Song X, Tangen CM, Goodman PJ, Thompson IM, Meyskens FL, Goodman GE, Minasian LM, Parnes HL, Klein EA, Kristal AR (2013) Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J Natl Cancer Inst 105:1132–1141. doi:10.1093/jnci/djt174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311. doi:10.1074/jbc.M211495200

    Article  CAS  PubMed  Google Scholar 

  • Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, McCoy DC, Kenakin TP, Andrews JL, Ammala C, Fornwald JA, Ignar DM, Jenkinson S (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148:619–628. doi:10.1038/sj.bjp.0706770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319. doi:10.1074/jbc.M211609200

    Article  CAS  PubMed  Google Scholar 

  • Brownlie R, Mayers RM, Pierce JA, Marley AE, Smith DM (2008) The long-chain fatty acid receptor, GPR40, and glucolipotoxicity: investigations using GPR40-knockout mice. Biochem Soc Trans 36:950–954. doi:10.1042/BST0360950

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schröder R, Hudson BD, Milligan G, Cawthorne MA, Kostenis E, Kassack MU, Ulven T (2012) Free fatty acid receptor 1 (FFA1/GPR40) agonists: mesylpropoxy appendage lowers lipophilicity and improves ADME properties. J Med Chem 55:6624–6628. doi:10.1021/jm3002026

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schmidt J, Hansen SV, Hudson BD, Zaibi M, Markussen SB, Hagesaether E, Milligan G, Cawthorne MA, Kostenis E, Kassack MU, Ulven T (2013) Discovery of a potent and selective free fatty acid receptor 1 agonist with low lipophilicity and high oral bioavailability. J Med Chem 56:982–992. doi:10.1021/jm301470a

    Article  CAS  PubMed  Google Scholar 

  • Christiansen E, Hudson BD, Hansen AH, Milligan G, Ulven T (2016) Development and characterization of a potent free fatty acid receptor 1 (FFA1) fluorescent tracer. J Med Chem. doi:10.1021/acs.jmedchem.6b00202

    Google Scholar 

  • Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr 21:357–365

    Article  CAS  PubMed  Google Scholar 

  • Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings DE, Arterburn DE, Westbrook EO, Kuzma JN, Stewart SD, Chan CP, Bock SN, Landers JT, Kratz M, Foster-Schubert KE, Flum DR (2016) Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. doi:10.1007/s00125-016-3903-x

    Google Scholar 

  • Darwish KM, Salama I, Mostafa S, Gomaa MS, Helal MA (2016) Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARg/FFAR1 dual agonists. Eur J Med Chem 109:157–172. doi:10.1016/j.ejmech.2015.12.049

    Article  CAS  PubMed  Google Scholar 

  • Defossa E, Wagner M (2014) Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett 24(14):2991–3000. doi:10.1016/j.bmcl.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  • de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schünemann H, Beyene J, Anand SS (2015) Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 351:h3978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demant EJ, Richieri GV, Kleinfeld AM (2002) Stopped-flow kinetic analysis of long-chain fatty acid dissociation from bovine serum albumin. Biochem J 363:809–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbins RL, Chester MW, Daniels MB, McGarry JD, Stein DT (1998) Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes 47:1613–1618

    Article  CAS  PubMed  Google Scholar 

  • Eliasson B, Liakopoulos V, Franzén S, Näslund I, Svensson AM, Ottosson J, Gudbjörnsdottir S (2015) Cardiovascular disease and mortality in patients with type 2 diabetes after bariatric surgery in Sweden: a nationwide, matched, observational cohort study. Lancet Diabetes Endocrinol 3:847–854. doi:10.1016/S2213-8587(15)00334-4

    Article  PubMed  Google Scholar 

  • Engelstoft MS, Park WM, Sakata I, Kristensen LV, Husted AS, Osborne-Lawrence S, Piper PK, Walker AK, Pedersen MH, Nøhr MK, Pan J, Sinz CJ, Carrington PE, Akiyama TE, Jones RM, Tang C, Ahmed K, Offermanns S, Egerod KL, Zigman JM, Schwartz TW (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab 2:376–392. doi:10.1016/j.molmet.2013.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes S, Stafford S, Coope G, Heffron H, Real K, Newman R, Davenport R, Barnes M, Grosse J, Cox H (2015) Selective FFA2 agonism appears to act via Intestinal PYY to reduce transit and food intake but does not improve glucose tolerance in mouse models. Diabetes 64:3763–3771. doi:10.2337/db15-0481

    Article  CAS  PubMed  Google Scholar 

  • Ge H, Li X, Weiszmann J, Wang P, Baribault H, Chen JL, Tian H, Li Y (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149:4519–4526. doi:10.1210/en.2008-0059

    Article  CAS  PubMed  Google Scholar 

  • Gerber M (2012) Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies. Br J Nutr 107(Suppl 2):S228–S239. doi:10.1017/S0007114512001614

    Article  CAS  PubMed  Google Scholar 

  • Greenough WB, Crespin SR, Steinberg D (1967) Hypoglycaemia and hyperinsulinaemia in response to raised free-fatty-acid levels. Lancet 2:1334–1336

    Article  PubMed  Google Scholar 

  • Guo L, Zhang X, Zhou D, Okunade AL, Su X (2012) Stereospecificity of fatty acid 2-hydroxylase and differential functions of 2-hydroxy fatty acid enantiomers. J Lipid Res 53:1327–1335. doi:10.1194/jlr.M025742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamdouchi C, Kahl SD, Patel Lewis A, Cardona GR, Zink RW, Chen K, Eessalu TE, Ficorilli JV, Marcelo MC, Otto KA, Wilbur KL, Lineswala JP, Piper JL, Coffey DS, Sweetana SA, Haas JV, Brooks DA, Pratt EJ, Belin RM, Deeg MA, Ma X, Cannady EA, Johnson JT, Yumibe NP, Chen Q, Maiti P, Montrose-Rafizadeh C, Chen Y, and Reifel Miller A (2016) The discovery, preclinical, and early clinical development of potent and selective GPR40 agonists for the treatment of type 2 diabetes mellitus (LY2881835, LY2922083, and LY2922470). J Med Chem doi: 10.1021/acs.jmedchem.6b00892

  • Hamid YH, Vissing H, Holst B, Urhammer SA, Pyke C, Hansen SK, Glümer C, Borch-Johnsen K, Jørgensen T, Schwartz TW, Pedersen O, Hansen T (2005) Studies of relationships between variation of the human G protein-coupled receptor 40 gene and type 2 diabetes and insulin release. Diabet Med 22:74–80. doi:10.1111/j.1464-5491.2005.01505.x

    Article  CAS  PubMed  Google Scholar 

  • Hauge M, Vestmar MA, Husted AS, Ekberg JP, Wright MJ, Di Salvo J, Weinglass AB, Engelstoft MS, Madsen AN, Lückmann M, Miller MW, Trujillo ME, Frimurer TM, Holst B, Howard AD, Schwartz TW (2015) GPR40 (FFAR1) – combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol Metab 4:3–14. doi:10.1016/j.molmet.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  • Hester CM, Jala VR, Langille MG, Umar S, Greiner KA, Haribabu B (2015) Fecal microbes, short chain fatty acids, and colorectal cancer across racial/ethnic groups. World J Gastroenterol 21:2759–2769. doi:10.3748/wjg.v21.i9.2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiatt WR, Kaul S, Smith RJ (2013) The cardiovascular safety of diabetes drugs--insights from the rosiglitazone experience. N Engl J Med 369:1285–1287. doi:10.1056/NEJMp1309610

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94. doi:10.1038/nm1168

    Article  CAS  PubMed  Google Scholar 

  • Hopkins MM, Zhang Z, Liu Z, Meier KE (2016) Eicosopentaneoic acid and other free fatty acid receptor agonists inhibit lysophosphatidic acid- and epidermal growth factor-induced proliferation of human breast cancer cells. J Clin Med 5. doi:10.3390/jcm5020016

  • Houze JB, Zhu L, Sun Y, Akerman M, Qiu W, Zhang AJ, Sharma R, Schmitt M, Wang Y, Liu J, Liu J, Medina JC, Reagan JD, Luo J, Tonn G, Zhang J, Lu JY, Chen M, Lopez E, Nguyen K, Yang L, Tang L, Tian H, Shuttleworth SJ, Lin DC (2012) AMG 837: a potent, orally bioavailable GPR40 agonist. Bioorg Med Chem Lett 22(2):1267–1270. doi:10.1016/j.bmcl.2011.10.118

    Article  CAS  PubMed  Google Scholar 

  • Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G (2012) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J Biol Chem 287:41195–41209. doi:10.1074/jbc.M112.396259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Due-Hansen ME, Christiansen E, Hansen AM, Mackenzie AE, Murdoch H, Pandey SK, Ward RJ, Marquez R, Tikhonova IG, Ulven T, Milligan G (2013a) Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor. J Biol Chem 288:17296–17312. doi:10.1074/jbc.M113.455337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Murdoch H, Milligan G (2013b) Minireview: The effects of species ortholog and SNP variation on receptors for free fatty acids. Mol Endocrinol 27:1177–1187. doi:10.1210/me.2013-1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Shimpukade B, Mackenzie AE, Butcher AJ, Pediani JD, Christiansen E, Heathcote H, Tobin AB, Ulven T, Milligan G (2013c) The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol Pharmacol 84:710–725. doi:10.1124/mol.113.087783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson BD, Christiansen E, Murdoch H, Jenkins L, Hansen AH, Madsen O, Ulven T, Milligan G (2014a) Complex pharmacology of novel allosteric free fatty acid 3 receptor ligands. Mol Pharmacol 86:200–210. doi:10.1124/mol.114.093294

    Article  PubMed  CAS  Google Scholar 

  • Hudson BD, Shimpukade B, Milligan G, Ulven T (2014b) The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). J Biol Chem 289:20345–20358. doi:10.1074/jbc.M114.561449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries PS, Benbow JW, Bonin PD, Boyer D, Doran SD, Frisbie RK, Piotrowski DW, Balan G, Bechle BM, Conn EL, Dirico KJ, Oliver RM, Soeller WC, Southers JA, Yang X (2009) Synthesis and SAR of 1,2,3,4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists. Bioorg Med Chem Lett 19:2400–2403. doi:10.1016/j.bmcl.2009.03.082

    Article  CAS  PubMed  Google Scholar 

  • Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L, Kimura I, Leloire A, Liu N, Iida K, Choquet H, Besnard P, Lecoeur C, Vivequin S, Ayukawa K, Takeuchi M, Ozawa K, Tauber M, Maffeis C, Morandi A, Buzzetti R, Elliott P, Pouta A, Jarvelin MR, Körner A, Kiess W, Pigeyre M, Caiazzo R, Van Hul W, Van Gaal L, Horber F, Balkau B, Lévy-Marchal C, Rouskas K, Kouvatsi A, Hebebrand J, Hinney A, Scherag A, Pattou F, Meyre D, Koshimizu TA, Wolowczuk I, Tsujimoto G, Froguel P (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483:350–354. doi:10.1038/nature10798

    Article  CAS  PubMed  Google Scholar 

  • Inagaki N, Kondo K, Yoshinari T, Maruyama N, Susuta Y, Kuki H (2013) Efficacy and safety of canagliflozin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, 12-week study. Diabetes Obes Metab 15:1136–1145. doi:10.1111/dom.12149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176. doi:10.1038/nature01478

    Article  CAS  PubMed  Google Scholar 

  • Jouven X, Charles MA, Desnos M, Ducimetière P (2001) Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation 104:756–761

    Article  CAS  PubMed  Google Scholar 

  • Kaku K, Araki T, Yoshinaka R (2013) Randomized, double-blind, dose-ranging study of TAK-875, a novel GPR40 agonist, in Japanese patients with inadequately controlled type 2 diabetes. Diabetes Care 36(2):245–250. doi:10.2337/dc12-0872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaku K, Enya K, Nakaya R, Ohira T, Matsuno R (2015) Efficacy and safety of fasiglifam (TAK-875), a G protein-coupled receptor 40 agonist, in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise: a randomized, double-blind, placebo-controlled, phase III trial. Diabetes Obes Metab 17(7):675–681. doi:10.1111/dom.12467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalis M, Levéen P, Lyssenko V, Almgren P, Groop L, Cilio CM (2007) Variants in the FFAR1 gene are associated with beta cell function. PLoS One 2, e1090. doi:10.1371/journal.pone.0001090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang SU (2013) GPR119 agonists: a promising approach for T2DM treatment? A SWOT analysis of GPR119. Drug Discov Today 18:1309–1315. doi:10.1016/j.drudis.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  • Kebede M, Alquier T, Latour MG, Semache M, Tremblay C, Poitout V (2008) The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 57:2432–2437. doi:10.2337/db08-0553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MZ, He L (2015) The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology. doi:10.1016/j.neuropharm.2015.05.013

    Google Scholar 

  • Khan MZ, Zhuang X, He L (2016) GPR40 receptor activation leads to CREB phosphorylation and improves cognitive performance in an Alzheimer’s disease mouse model. Neurobiol Learn Mem 131:46–55. doi:10.1016/j.nlm.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  • Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145:396–406.e1-10. doi:10.1053/j.gastro.2013.04.056

  • Kim CH, Park J, Kim M (2014) Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune Netw 14:277–288. doi:10.4110/in.2014.14.6.277

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura I (2014) Host energy regulation via SCFAs receptors, as dietary nutrition sensors, by gut microbiota. Yakugaku Zasshi 134:1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829. doi:10.1038/ncomms2852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konda VR, Desai A, Darland G, Grayson N, Bland JS (2014) KDT501, a derivative from hops, normalizes glucose metabolism and body weight in rodent models of diabetes. PLoS One 9, e87848. doi:10.1371/journal.pone.0087848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kotarsky K, Nilsson NE, Olde B, Owman C (2003) Progress in methodology. Improved reporter gene assays used to identify ligands acting on orphan seven-transmembrane receptors. Pharmacol Toxicol 93:249–258

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara A (2014) Contributions of colonic short-chain fatty acid receptors in energy homeostasis. Front Endocrinol 5:144. doi:10.3389/fendo.2014.00144

    Article  Google Scholar 

  • Lan H, Hoos LM, Liu L, Tetzloff G, Hu W, Abbondanzo SJ, Vassileva G, Gustafson EL, Hedrick JA, Davis HR (2008) Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease. Diabetes 57:2999–3006. doi:10.2337/db08-0596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL, Luo J, Lin DC, Poitout V (2007) GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 56:1087–1094. doi:10.2337/db06-1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489. doi:10.1074/jbc.M301403200

    Article  PubMed  CAS  Google Scholar 

  • Lin DC, Zhang J, Zhuang R, Li F, Nguyen K, Chen M, Tran T, Lopez E, Lu JY, Li XN, Tang L, Tonn GR, Swaminath G, Reagan JD, Chen JL, Tian H, Lin YJ, Houze JB, Luo J (2011) AMG 837: a novel GPR40/FFA1 agonist that enhances insulin secretion and lowers glucose levels in rodents. PLoS One 6, e27270. doi:10.1371/journal.pone.0027270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin DC, Guo Q, Luo J, Zhang J, Nguyen K, Chen M, Tran T, Dransfield PJ, Brown SP, Houze J, Vimolratana M, Jiao XY, Wang Y, Birdsall NJ, Swaminath G (2012) Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor. Mol Pharmacol 82:843–859. doi:10.1124/mol.112.079640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Hopkins MM, Zhang Z, Quisenberry CB, Fix LC, Galvan BM, Meier KE (2015) Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells. J Pharmacol Exp Ther 352:380–394. doi:10.1124/jpet.114.218974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez-Garcia E, Schulze MB, Meigs JB, Manson JE, Rifai N, Stampfer MJ, Willett WC, Hu FB (2005) Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 135:562–566

    CAS  PubMed  Google Scholar 

  • Luo J, Swaminath G, Brown SP, Zhang J, Guo Q, Chen M, Nguyen K, Tran T, Miao L, Dransfield PJ, Vimolratana M, Houze JB, Wong S, Toteva M, Shan B, Li F, Zhuang R, Lin DC (2012) A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS One 7, e46300. doi:10.1371/journal.pone.0046300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luttrell LM, Gesty-Palmer D (2010) Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 62:305–330. doi:10.1124/pr.109.002436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, Maruya M, Ian McKenzie C, Hijikata A, Wong C, Binge L, Thorburn AN, Chevalier N, Ang C, Marino E, Robert R, Offermanns S, Teixeira MM, Moore RJ, Flavell RA, Fagarasan S, Mackay CR (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 6:6734. doi:10.1038/ncomms7734

    Article  CAS  PubMed  Google Scholar 

  • MacLean CH, Newberry SJ, Mojica WA, Khanna P, Issa AM, Suttorp MJ, Lim YW, Traina SB, Hilton L, Garland R, Morton SC (2006) Effects of omega-3 fatty acids on cancer risk: a systematic review. JAMA 295:403–415. doi:10.1001/jama.295.4.403

    Article  CAS  PubMed  Google Scholar 

  • Mancini AD, Poitout V (2015) GPR40 agonists for the treatment of type 2 diabetes: life after ‘TAKing’ a hit. Diabetes Obes Metab 17:622–629. doi:10.1111/dom.12442

    Article  CAS  PubMed  Google Scholar 

  • Mancini AD, Bertrand G, Vivot K, Carpentier É, Tremblay C, Ghislain J, Bouvier M, Poitout V (2015) β-Arrestin recruitment and biased agonism at free fatty acid receptor 1. J Biol Chem 290:21131–21140. doi:10.1074/jbc.M115.644450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286. doi:10.1038/nature08530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masui R, Sasaki M, Funaki Y, Ogasawara N, Mizuno M, Iida A, Izawa S, Kondo Y, Ito Y, Tamura Y, Yanamoto K, Noda H, Tanabe A, Okaniwa N, Yamaguchi Y, Iwamoto T, Kasugai K (2013) G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm Bowel Dis 19:2848–2856. doi:10.1097/01.MIB.0000435444.14860.ea

    Article  PubMed  Google Scholar 

  • McNelis JC, Lee YS, Mayoral R, van der Kant R, Johnson AM, Wollam J, Olefsky JM (2015) GPR43 potentiates β-cell function in obesity. Diabetes 64:3203–3217. doi:10.2337/db14-1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan G, Alvarez-Curto E, Watterson KR, Ulven T, Hudson BD (2015) Characterizing pharmacological ligands to study the long-chain fatty acid receptors GPR40/FFA1 and GPR120/FFA4. Br J Pharmacol 172:3254–3265. doi:10.1111/bph.12879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montalban-Arques A, De Schryver P, Bossier P, Gorkiewicz G, Mulero V, Gatlin DM, Galindo-Villegas J (2015) Selective manipulation of the gut microbiota improves immune status in vertebrates. Front Immunol 6:512. doi:10.3389/fimmu.2015.00512

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamoto K, Nishinaka T, Matsumoto K, Kasuya F, Mankura M, Koyama Y, Tokuyama S (2012) Involvement of the long-chain fatty acid receptor GPR40 as a novel pain regulatory system. Brain Res 1432:74–83. doi:10.1016/j.brainres.2011.11.012

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto K, Nishinaka T, Sato N, Mankura M, Koyama Y, Kasuya F, Tokuyama S (2013) Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain. PLoS One 8, e81563. doi:10.1371/journal.pone.0081563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakamoto K, Nishinaka T, Sato N, Aizawa F, Yamashita T, Mankura M, Koyama Y, Kasuya F, Tokuyama S (2015) The activation of supraspinal GPR40/FFA1 receptor signalling regulates the descending pain control system. Br J Pharmacol 172:1250–1262. doi:10.1111/bph.13003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namour F, Galien R, Van Kaem T, Van der Aa A, Vanhoutte F, Beetens J, Van’t Klooster G (2016) Safety, pharmacokinetics and pharmacodynamics of GLPG0974, a potent and selective FFA2 antagonist, in healthy male subjects. Br J Clin Pharmacol. doi:10.1111/bcp.12900

    PubMed  PubMed Central  Google Scholar 

  • Negoro N, Sasaki S, Mikami S, Ito M, Suzuki M, Tsujihata Y, Ito R, Harada A, Takeuchi K, Suzuki N, Miyazaki J, Santou T, Odani T, Kanzaki N, Funami M, Tanaka T, Kogame A, Matsunaga S, Yasuma T, Momose Y (2010) Discovery of TAK-875: a potent, selective, and orally bioavailable GPR40 agonist. ACS Med Chem Lett 1:290–294. doi:10.1021/ml1000855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson NE, Kotarsky K, Owman C, Olde B (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 303:1047–1052

    Article  CAS  PubMed  Google Scholar 

  • Nøhr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, Husted AS, Sichlau RM, Grunddal KV, Poulsen SS, Han S, Jones RM, Offermanns S, Schwartz TW (2013) GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154:3552–3564. doi:10.1210/en.2013-1142

    Article  PubMed  CAS  Google Scholar 

  • Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698. doi:10.1016/j.cell.2010.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh DY, Walenta E, Akiyama TE, Lagakos WS, Lackey D, Pessentheiner AR, Sasik R, Hah N, Chi TJ, Cox JM, Powels MA, Di Salvo J, Sinz C, Watkins SM, Armando AM, Chung H, Evans RM, Quehenberger O, McNelis J, Bogner-Strauss JG, Olefsky JM (2014) A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med 20:942–947. doi:10.1038/nm.3614

  • Omar B, Ahrén B (2014) Pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors. Diabetes 63:2196–2202. doi:10.2337/db14-0052

    Article  PubMed  Google Scholar 

  • Palau-Rodriguez M, Tulipani S, Isabel Queipo-Ortuño M, Urpi-Sarda M, Tinahones FJ, Andres-Lacueva C (2015) Metabolomic insights into the intricate gut microbial-host interaction in the development of obesity and type 2 diabetes. Front Microbiol 6:1151. doi:10.3389/fmicb.2015.01151

    Article  PubMed  PubMed Central  Google Scholar 

  • Park SC, Jeen YT (2015) Current and emerging biologics for ulcerative colitis. Gut Liver 9:18–27. doi:10.5009/gnl14226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BO, Kim SH, Kong GY, Kim da H, Kwon MS, Lee SU, Kim MO, Cho S, Lee S, Lee HJ, Han SB, Kwak YS, Lee SB, Kim S (2016) Selective novel inverse agonists for human GPR43 augment GLP-1 secretion. Eur J Pharmacol 771:1–9. doi:10.1016/j.ejphar.2015.12.010

  • Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, Lawson FC, Ping L, Wei X, Lewis EF, Maggioni AP, McMurray JJ, Probstfield JL, Riddle MC, Solomon SD, Tardif JC, Investigators E (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257. doi:10.1056/NEJMoa1509225

    Article  CAS  PubMed  Google Scholar 

  • Pizzonero M, Dupont S, Babel M, Beaumont S, Bienvenu N, Blanqué R, Cherel L, Christophe T, Crescenzi B, De Lemos E, Delerive P, Deprez P, De Vos S, Djata F, Fletcher S, Kopiejewski S, L’Ebraly C, Lefrançois JM, Lavazais S, Manioc M, Nelles L, Oste L, Polancec D, Quénéhen V, Soulas F, Triballeau N, van der Aar EM, Vandeghinste N, Wakselman E, Brys R, Saniere L (2014) Discovery and optimization of an azetidine chemical series as a free fatty acid receptor 2 (FFA2) antagonist: from hit to clinic. J Med Chem 57:10044–10057. doi:10.1021/jm5012885

    Article  CAS  PubMed  Google Scholar 

  • Potter KA, Kern MJ, Fullbright G, Bielawski J, Scherer SS, Yum SW, Li JJ, Cheng H, Han X, Venkata JK, Khan PA, Rohrer B, Hama H (2011) Central nervous system dysfunction in a mouse model of FA2H deficiency. Glia 59:1009–1021. doi:10.1002/glia.21172

    Article  PubMed  PubMed Central  Google Scholar 

  • Priyadarshini M, Layden BT (2015) FFAR3 modulates insulin secretion and global gene expression in mouse islets. Islets 7, e1045182. doi:10.1080/19382014.2015.1045182

    Article  PubMed  PubMed Central  Google Scholar 

  • Priyadarshini M, Villa SR, Fuller M, Wicksteed B, Mackay CR, Alquier T, Poitout V, Mancebo H, Mirmira RG, Gilchrist A, Layden BT (2015) An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol Endocrinol 29:1055–1066. doi:10.1210/me.2015-1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386. doi:10.1038/nrd3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richieri GV, Kleinfeld AM (1995) Unbound free fatty acid levels in human serum. J Lipid Res 36:229–240

    CAS  PubMed  Google Scholar 

  • Richieri GV, Ogata RT, Kleinfeld AM (1992) A fluorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids. J Biol Chem 267:23495–23501

    CAS  PubMed  Google Scholar 

  • Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105:16767–16772. doi:10.1073/pnas.0808567105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato J, Makita N, Iiri T (2016) Inverse agonism: the classic concept of GPCRs revisited. Endocr J. doi:10.1507/endocrj.EJ16-0084

    Google Scholar 

  • Seok J (2015) Evidence-based translation for the genomic responses of murine models for the study of human immunity. PLoS One 10, e0118017. doi:10.1371/journal.pone.0118017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sergeev E, Hansen AH, Pandey SK, Mackenzie AE, Hudson BD, Ulven T, Milligan G (2016) Non-equivalence of key positively charged residues of the free fatty acid 2 receptor in the recognition and function of agonist versus antagonist ligands. J Biol Chem 291(1):303–317. doi:10.1074/jbc.M115.687939

    Article  CAS  PubMed  Google Scholar 

  • Shimpukade B, Hudson BD, Hovgaard CK, Milligan G, Ulven T (2012) Discovery of a potent and selective GPR120 agonist. J Med Chem 55:4511–4515. doi:10.1021/jm300215x

    Article  CAS  PubMed  Google Scholar 

  • Sina C, Gavrilova O, Förster M, Till A, Derer S, Hildebrand F, Raabe B, Chalaris A, Scheller J, Rehmann A, Franke A, Ott S, Häsler R, Nikolaus S, Fölsch UR, Rose-John S, Jiang HP, Li J, Schreiber S, Rosenstiel P (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 183:7514–7522. doi:10.4049/jimmunol.0900063

    Article  CAS  PubMed  Google Scholar 

  • Smith NJ, Stoddart LA, Devine NM, Jenkins L, Milligan G (2009) The action and mode of binding of thiazolidinedione ligands at free fatty acid receptor 1. J Biol Chem 284:17527–17539. doi:10.1074/jbc.M109.012849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573. doi:10.1126/science.1241165

    Article  CAS  PubMed  Google Scholar 

  • Song C, Shieh CH, Wu YS, Kalueff A, Gaikwad S, Su KP (2016) The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer’s disease: acting separately or synergistically? Prog Lipid Res 62:41–54. doi:10.1016/j.plipres.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  • Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H (2005) The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab 1:245–258. doi:10.1016/j.cmet.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  • Stoddart LA, Smith NJ, Milligan G (2008) International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions. Pharmacol Rev 60:405–417. doi:10.1124/pr.108.00802

    Article  CAS  PubMed  Google Scholar 

  • Suckow AT, Polidori D, Yan W, Chon S, Ma JY, Leonard J, Briscoe CP (2014) Alteration of the glucagon axis in GPR120 (FFAR4) knockout mice: a role for GPR120 in glucagon secretion. J Biol Chem 289:15751–15763. doi:10.1074/jbc.M114.568683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S, Offermanns S (2015) Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 21:173–177. doi:10.1038/nm.3779

    Article  CAS  PubMed  Google Scholar 

  • Terauchi Y, Satoi Y, Takeuchi M, Imaoka T (2014) Monotherapy with the once weekly GLP-1 receptor agonist dulaglutide for 12 weeks in Japanese patients with type 2 diabetes: dose-dependent effects on glycaemic control in a randomised, double-blind, placebo-controlled study. Endocr J 61:949–959

    Article  CAS  PubMed  Google Scholar 

  • Tikhonova IG, Poerio E (2015) Free fatty acid receptors: structural models and elucidation of ligand binding interactions. BMC Struct Biol 15:16. doi:10.1186/s12900-015-0044-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tokuyama S, Nakamoto K (2011) Unsaturated fatty acids and pain. Biol Pharm Bull 34:1174–1178

    Article  CAS  PubMed  Google Scholar 

  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371. doi:10.2337/db11-1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20:159–166. doi:10.1038/nm.3444

    Article  CAS  PubMed  Google Scholar 

  • van Eijk HM, Bloemen JG, Dejong CH (2009) Application of liquid chromatography-mass spectrometry to measure short chain fatty acids in blood. J Chromatogr B Analyt Technol Biomed Life Sci 877:719–724. doi:10.1016/j.jchromb.2009.01.039

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman C, Kuo F (2005) The G-protein coupled receptor, GPR84 regulates IL-4 production by T lymphocytes in response to CD3 crosslinking. Immunol Lett 101:144–153. doi:10.1016/j.imlet.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  • Vermeire S, Kojecký V, Knoflícek V, Reinisch W, Van Kaem T, Namour F, Beetens J, Vanhoutte F (2015) GLPG0974, an FFA2 antagonist, in ulcerative colitis: efficacy and safety in a multicenter proof of concept. J Crohn’s Colitis Abstr. 10th Congress of ECCO: S39

    Google Scholar 

  • Vettor R, Granzotto M, De Stefani D, Trevellin E, Rossato M, Farina MG, Milan G, Pilon C, Nigro A, Federspil G, Vigneri R, Vitiello L, Rizzuto R, Baratta R, Frittitta L (2008) Loss-of-function mutation of the GPR40 gene associates with abnormal stimulated insulin secretion by acting on intracellular calcium mobilization. J Clin Endocrinol Metab 93:3541–3550. doi:10.1210/jc.2007-2680

    Article  CAS  PubMed  Google Scholar 

  • Vieira AT, Macia L, Galvão I, Martins FS, Canesso MC, Amaral FA, Garcia CC, Maslowski KM, De Leon E, Shim D, Nicoli JR, Harper JL, Teixeira MM, Mackay CR (2015) A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthritis Rheumatol 67:1646–1656. doi:10.1002/art.39107

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wu X, Simonavicius N, Tian H, Ling L (2006) Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281:34457–34464. doi:10.1074/jbc.M608019200

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiao X, Kayser F, Liu J, Wang Z, Wanska M, Greenberg J, Weiszmann J, Ge H, Tian H, Wong S, Schwandner R, Lee T, Li Y (2010) The first synthetic agonists of FFA2: discovery and SAR of phenylacetamides as allosteric modulators. Bioorg Med Chem Lett 20:493–498. doi:10.1016/j.bmcl.2009.11.112

    Article  PubMed  CAS  Google Scholar 

  • Watson SJ, Brown AJ, Holliday ND (2012) Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 81:631–642. doi:10.1124/mol.111.077388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams IR, Parkos CA (2007) Colonic neutrophils in inflammatory bowel disease: double-edged swords of the innate immune system with protective and destructive capacity. Gastroenterology 133:2049–2052. doi:10.1053/j.gastro.2007.10.031

    Article  PubMed  Google Scholar 

  • Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 101:1045–1050. doi:10.1073/pnas.2637002100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Swaminath G, Cao Q, Yang L, Guo Q, Salomonis H, Lu J, Houze JB, Dransfield PJ, Wang Y, Liu JJ, Wong S, Schwandner R, Steger F, Baribault H, Liu L, Coberly S, Miao L, Zhang J, Lin DC, Schwarz M (2013) Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol Cell Endocrinol 369:119–129. doi:10.1016/j.mce.2013.01.009

    Article  CAS  PubMed  Google Scholar 

  • Yabuki C, Komatsu H, Tsujihata Y, Maeda R, Ito R, Matsuda-Nagasumi K, Sakuma K, Miyawaki K, Kikuchi N, Takeuchi K, Habata Y, Mori M (2013) A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1. PLoS One 8, e76280. doi:10.1371/journal.pone.0076280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaibi MS, Stocker CJ, O’Dowd J, Davies A, Bellahcene M, Cawthorne MA, Brown AJ, Smith DM, Arch JR (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 584:2381–2386. doi:10.1016/j.febslet.2010.04.027

    Article  CAS  PubMed  Google Scholar 

  • Zöller I, Meixner M, Hartmann D, Büssow H, Meyer R, Gieselmann V, Eckhardt M (2008) Absence of 2-hydroxylated sphingolipids is compatible with normal neural development but causes late-onset axon and myelin sheath degeneration. J Neurosci 28(39):9741–9754. doi:10.1523/JNEUROSCI.0458-08.2008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Stephen Jenkinson and David Polidori for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia P. Briscoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Suckow, A.T., Briscoe, C.P. (2016). Key Questions for Translation of FFA Receptors: From Pharmacology to Medicines. In: Milligan, G., Kimura, I. (eds) Free Fatty Acid Receptors. Handbook of Experimental Pharmacology, vol 236. Springer, Cham. https://doi.org/10.1007/164_2016_45

Download citation

Publish with us

Policies and ethics