Skip to main content

Viruses That Exploit Actin-Based Motility for Their Replication and Spread

  • Chapter
  • First Online:
The Actin Cytoskeleton

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 235))

Abstract

The actin cytoskeleton is a crucial part of the eukaryotic cell. Viruses depend on host cells for their replication, and, as a result, many have developed ways of manipulating the actin network to promote their spread. This chapter reviews the various ways in which viruses utilize the actin cytoskeleton at discrete steps in their life cycle, from entry into the host cell, replication, and assembly of new progeny to virus release. Various actin inhibitors that function in different ways to affect proper actin dynamics can be used to parse the role of actin at these steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta EG, Castilla V, Damonte EB (2011) Infectious dengue-1 virus entry into mosquito C6/36 cells. Virus Res 160:173–179

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, Cunningham AL, Turville SG (2012) Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog 8, e1002762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar J, Shukla D (2009) Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J 276:7228–7236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akula SM, Naranatt PP, Walia NS, Wang FZ, Fegley B, Chandran B (2003) Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J Virol 77:7978–7990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso C, Galindo I, Cuesta-Geijo MA, Cabezas M, Hernaez B, Munoz-Moreno R (2013) African swine fever virus-cell interactions: from virus entry to cell survival. Virus Res 173:42–57

    Article  CAS  PubMed  Google Scholar 

  • Amyere M, Payrastre B, Krause U, Van Der Smissen P, Veithen A, Courtoy PJ (2000) Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol Biol Cell 11:3453–3467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakawa Y, Cordeiro JV, Schleich S, Newsome TP, Way M (2007a) The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host Microbe 1:227–240

    Article  CAS  PubMed  Google Scholar 

  • Arakawa Y, Cordeiro JV, Way M (2007b) F11L-mediated inhibition of RhoA-mDia signaling stimulates microtubule dynamics during vaccinia virus infection. Cell Host Microbe 1:213–226

    Article  CAS  PubMed  Google Scholar 

  • Araki N, Johnson MT, Swanson JA (1996) A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 135:1249–1260

    Article  CAS  PubMed  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809

    Article  CAS  PubMed  Google Scholar 

  • Arhel N, Genovesio A, Kim KA, Miko S, Perret E, Olivo-Marin JC, Shorte S, Charneau P (2006) Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Methods 3:817–824

    Article  CAS  PubMed  Google Scholar 

  • Aspenstrom P, Fransson A, Saras J (2004) Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 377:327–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P, Kopf M, Matthias P, Helenius A, Yamauchi Y (2014) Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346:473–477

    Article  CAS  PubMed  Google Scholar 

  • Barrero-Villar M, Cabrero JR, Gordon-Alonso M, Barroso-Gonzalez J, Alvarez-Losada S, Munoz-Fernandez MA, Sanchez-Madrid F, Valenzuela-Fernandez A (2009) Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. J Cell Sci 122:103–113

    Article  CAS  PubMed  Google Scholar 

  • Bastiani M, Parton RG (2010) Caveolae at a glance. J Cell Sci 123:3831–3836

    Article  CAS  PubMed  Google Scholar 

  • Bear JE, Krause M, Gertler FB (2001) Regulating cellular actin assembly. Curr Opin Cell Biol 13:158–166

    Article  CAS  PubMed  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12:780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghall H, Wallen C, Hyypia T, Vainionpaa R (2004) Role of cytoskeleton components in measles virus replication. Arch Virol 149:891–901

    Article  CAS  PubMed  Google Scholar 

  • Bosse JB, Virding S, Thiberge SY, Scherer J, Wodrich H, Ruzsics Z, Koszinowski UH, Enquist LW (2014) Nuclear herpesvirus capsid motility is not dependent on F-actin. MBio 5:e01909–e01914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucrot E, Saffarian S, Massol R, Kirchhausen T, Ehrlich M (2006) Role of lipids and actin in the formation of clathrin-coated pits. Exp Cell Res 312:4036–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braet F, De Zanger R, Jans D, Spector I, Wisse E (1996) Microfilament-disrupting agent latrunculin A induces and increased number of fenestrae in rat liver sinusoidal endothelial cells: comparison with cytochalasin B. Hepatology 24:627–635

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, Hogle JM (2007) Imaging poliovirus entry in live cells. PLoS Biol 5, e183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bravo-Cordero JJ, Magalhaes MA, Eddy RJ, Hodgson L, Condeelis J (2013) Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 14:405–415

    Article  CAS  PubMed  Google Scholar 

  • Burke E, Mahoney NM, Almo SC, Barik S (2000) Profilin is required for optimal actin-dependent transcription of respiratory syncytial virus genome RNA. J Virol 74:669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlier MF, Pernier J, Montaville P, Shekhar S, Kuhn S; Cytoskeleton Dynamics and Motility Group (2015) Control of polarized assembly of actin filaments in cell motility. Cell Mol Life Sci 72:3051–3067

    Google Scholar 

  • Carlson LA, de Marco A, Oberwinkler H, Habermann A, Briggs JA, Krausslich HG, Grunewald K (2010) Cryo electron tomography of native HIV-1 budding sites. PLoS Pathog 6, e1001173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Charlton CA, Volkman LE (1993) Penetration of Autographa californica nuclear polyhedrosis virus nucleocapsids into IPLB Sf 21 cells induces actin cable formation. Virology 197:245–254

    Article  CAS  PubMed  Google Scholar 

  • Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9:1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Cibulka J, Fraiberk M, Forstova J (2012) Nuclear actin and lamins in viral infections. Viruses 4:325–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clement C, Tiwari V, Scanlan PM, Valyi-Nagy T, Yue BY, Shukla D (2006) A novel role for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol 174:1009–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti MA, Adelstein RS (2008) Nonmuscle myosin II moves in new directions. J Cell Sci 121:11–18

    Article  CAS  PubMed  Google Scholar 

  • Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro JV, Guerra S, Arakawa Y, Dodding MP, Esteban M, Way M (2009) F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection. PLoS One 4, e8506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coue M, Brenner SL, Spector I, Korn ED (1987) Inhibition of actin polymerization by latrunculin A. FEBS Lett 213:316–318

    Article  CAS  PubMed  Google Scholar 

  • Cramer LP (1999) Role of actin-filament disassembly in lamellipodium protrusion in motile cells revealed using the drug jasplakinolide. Curr Biol 9:1095–1105

    Article  CAS  PubMed  Google Scholar 

  • Cudmore S, Cossart P, Griffiths G, Way M (1995) Actin-based motility of vaccinia virus. Nature 378:636–638

    Article  CAS  PubMed  Google Scholar 

  • Cudmore S, Reckmann I, Griffiths G, Way M (1996) Vaccinia virus: a model system for actin-membrane interactions. J Cell Sci 109(Pt 7):1739–1747

    CAS  PubMed  Google Scholar 

  • Cureton DK, Massol RH, Saffarian S, Kirchhausen TL, Whelan SP (2009) Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog 5, e1000394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dietzel E, Kolesnikova L, Maisner A (2013) Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms. Virol J 10:249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Disanza A, Steffen A, Hertzog M, Frittoli E, Rottner K, Scita G (2005) Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell Mol Life Sci 62:955–970

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Tiwari V, Shukla D (2008) Herpes simplex virus type 1 induces filopodia in differentiated P19 neural cells to facilitate viral spread. Neurosci Lett 440:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doceul V, Hollinshead M, van der Linden L, Smith GL (2010) Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327:873–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolnik O, Kolesnikova L, Welsch S, Strecker T, Schudt G, Becker S (2014) Interaction with Tsg101 is necessary for the efficient transport and release of nucleocapsids in marburg virus-infected cells. PLoS Pathog 10, e1004463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehrlich M, Boll W, Van Oijen A, Hariharan R, Chandran K, Nibert ML, Kirchhausen T (2004) Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118:591–605

    Article  CAS  PubMed  Google Scholar 

  • Fackler OT, Kienzle N, Kremmer E, Boese A, Schramm B, Klimkait T, Kucherer C, Mueller-Lantzsch N (1997) Association of human immunodeficiency virus Nef protein with actin is myristoylation dependent and influences its subcellular localization. Eur J Biochem 247:843–851

    Article  CAS  PubMed  Google Scholar 

  • Favoreel HW, Enquist LW, Feierbach B (2007) Actin and Rho GTPases in herpesvirus biology. Trends Microbiol 15:426–433

    Article  CAS  PubMed  Google Scholar 

  • Feierbach B, Piccinotti S, Bisher M, Denk W, Enquist LW (2006) Alpha-herpesvirus infection induces the formation of nuclear actin filaments. PLoS Pathog 2, e85

    Article  PubMed  PubMed Central  Google Scholar 

  • Forzan M, Marsh M, Roy P (2007) Bluetongue virus entry into cells. J Virol 81:4819–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frischknecht F, Cudmore S, Moreau V, Reckmann I, Rottger S, Way M (1999) Tyrosine phosphorylation is required for actin-based motility of vaccinia but not Listeria or Shigella. Curr Biol 9:89–92

    Article  CAS  PubMed  Google Scholar 

  • Fuchsova B, Serebryannyy LA, de Lanerolle P (2015) Nuclear actin and myosins in adenovirus infection. Exp Cell Res 338:170–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galindo I, Cuesta-Geijo MA, Hlavova K, Munoz-Moreno R, Barrado-Gil L, Dominguez J, Alonso C (2015) African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Res 200:45–55

    Article  CAS  PubMed  Google Scholar 

  • Gaudin R, de Alencar BC, Arhel N, Benaroch P (2013) HIV trafficking in host cells: motors wanted! Trends Cell Biol 23:652–662

    Article  CAS  PubMed  Google Scholar 

  • Giuffre RM, Tovell DR, Kay CM, Tyrrell DL (1982) Evidence for an interaction between the membrane protein of a paramyxovirus and actin. J Virol 42:963–968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goley ED, Ohkawa T, Mancuso J, Woodruff JB, D'Alessio JA, Cande WZ, Volkman LE, Welch MD (2006) Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 314:464–467

    Article  CAS  PubMed  Google Scholar 

  • Gouin E, Welch MD, Cossart P (2005) Actin-based motility of intracellular pathogens. Curr Opin Microbiol 8:35–45

    Article  CAS  PubMed  Google Scholar 

  • Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336

    Article  CAS  PubMed  Google Scholar 

  • Greene W, Gao SJ (2009) Actin dynamics regulate multiple endosomal steps during Kaposi's sarcoma-associated herpesvirus entry and trafficking in endothelial cells. PLoS Pathog 5, e1000512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gudheti MV, Curthoys NM, Gould TJ, Kim D, Gunewardene MS, Gabor KA, Gosse JA, Kim CH, Zimmerberg J, Hess ST (2013) Actin mediates the nanoscale membrane organization of the clustered membrane protein influenza hemagglutinin. Biophys J 104:2182–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handa Y, Durkin CH, Dodding MP, Way M (2013) Vaccinia virus F11 promotes viral spread by acting as a PDZ-containing scaffolding protein to bind myosin-9A and inhibit RhoA signaling. Cell Host Microbe 14:51–62

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Shang X, Wu J, Shan Y, Cai M, Jiang J, Huang Z, Tang Z, Wang H (2011) Single-particle tracking of hepatitis B virus-like vesicle entry into cells. Small 7:1212–1218

    Article  CAS  PubMed  Google Scholar 

  • Harries PA, Park JW, Sasaki N, Ballard KD, Maule AJ, Nelson RS (2009) Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc Natl Acad Sci U S A 106:17594–17599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartman MA, Spudich JA (2012) The myosin superfamily at a glance. J Cell Sci 125:1627–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan SS, Roy P (1999) Expression and functional characterization of bluetongue virus VP2 protein: role in cell entry. J Virol 73:9832–9842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasson T (2003) Myosin VI: two distinct roles in endocytosis. J Cell Sci 116:3453–3461

    Article  CAS  PubMed  Google Scholar 

  • Hernaez B, Alonso C (2010) Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J Virol 84:2100–2109

    Article  CAS  PubMed  Google Scholar 

  • Hofmann W, Reichart B, Ewald A, Muller E, Schmitt I, Stauber RH, Lottspeich F, Jockusch BM, Scheer U, Hauber J, Dabauvalle MC (2001) Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J Cell Biol 152:895–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollinshead M, Rodger G, Van Eijl H, Law M, Hollinshead R, Vaux DJ, Smith GL (2001) Vaccinia virus utilizes microtubules for movement to the cell surface. J Cell Biol 154:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsington J, Lynn H, Turnbull L, Cheng D, Braet F, Diefenbach RJ, Whitchurch CB, Karupiah G, Newsome TP (2013) A36-dependent actin filament nucleation promotes release of vaccinia virus. PLoS Pathog 9, e1003239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries AC, Way M (2013) The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nat Rev Microbiol 11:551–560

    Article  CAS  PubMed  Google Scholar 

  • Humphries AC, Dodding MP, Barry DJ, Collinson LM, Durkin CH, Way M (2012) Clathrin potentiates vaccinia-induced actin polymerization to facilitate viral spread. Cell Host Microbe 12:346–359

    Article  CAS  PubMed  Google Scholar 

  • Humphries AC, Donnelly SK, Way M (2014) Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. J Cell Sci 127:673–685

    Article  CAS  PubMed  Google Scholar 

  • Iyengar S, Hildreth JE, Schwartz DH (1998) Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J Virol 72:5251–5255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Baranda S, Gomez-Mouton C, Rojas A, Martinez-Prats L, Mira E, Ana Lacalle R, Valencia A, Dimitrov DS, Viola A, Delgado R, Martinez AC, Manes S (2007) Filamin-A regulates actin-dependent clustering of HIV receptors. Nat Cell Biol 9:838–846

    Article  CAS  PubMed  Google Scholar 

  • Jouvenet N, Windsor M, Rietdorf J, Hawes P, Monaghan P, Way M, Wileman T (2006) African swine fever virus induces filopodia-like projections at the plasma membrane. Cell Microbiol 8:1803–1811

    Article  CAS  PubMed  Google Scholar 

  • Kadiu I, Gendelman HE (2011) Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. J Neuroimmune Pharmacol 6:658–675

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalia M, Khasa R, Sharma M, Nain M, Vrati S (2013) Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol 87:148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalin S, Amstutz B, Gastaldelli M, Wolfrum N, Boucke K, Havenga M, DiGennaro F, Liska N, Hemmi S, Greber UF (2010) Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35. J Virol 84:5336–5350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallewaard NL, Bowen AL, Crowe JE Jr (2005) Cooperativity of actin and microtubule elements during replication of respiratory syncytial virus. Virology 331:73–81

    Article  CAS  PubMed  Google Scholar 

  • Khaitlina SY (2014) Intracellular transport based on actin polymerization. Biochemistry (Mosc) 79:917–927

    Article  CAS  Google Scholar 

  • Kimura T, Hashimoto I, Yamamoto A, Nishikawa M, Fujisawa JI (2000) Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells 5:289–307

    Article  CAS  PubMed  Google Scholar 

  • Koga R, Sugita Y, Noda T, Yanagi Y, Ohno S (2015) Actin-modulating protein cofilin is involved in the formation of measles virus ribonucleoprotein complex at the perinuclear region. J Virol 89:10524–10531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S (2010) Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol 188:547–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumakura M, Kawaguchi A, Nagata K (2015) Actin-myosin network is required for proper assembly of influenza virus particles. Virology 476:141–150

    Article  CAS  PubMed  Google Scholar 

  • Lakadamyali M, Rust MJ, Babcock HP, Zhuang X (2003) Visualizing infection of individual influenza viruses. Proc Natl Acad Sci U S A 100:9280–9285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanier LM, Volkman LE (1998) Actin binding and nucleation by Autographa california M nucleopolyhedrovirus. Virology 243:167–177

    Article  CAS  PubMed  Google Scholar 

  • Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W (2005) Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol 170:317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann M, Nikolic DS, Piguet V (2011) How HIV-1 takes advantage of the cytoskeleton during replication and cell-to-cell transmission. Viruses 3:1757–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite F, Way M (2015) The role of signalling and the cytoskeleton during Vaccinia Virus egress. Virus Res 209:87–99

    Article  CAS  PubMed  Google Scholar 

  • Lim JP, Gleeson PA (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89:836–843

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Belkina NV, Shaw S (2009) HIV infection of T cells: actin-in and actin-out. Sci Signal. 2:pe23

    Google Scholar 

  • Marek M, Merten OW, Galibert L, Vlak JM, van Oers MM (2011) Baculovirus VP80 protein and the F-actin cytoskeleton interact and connect the viral replication factory with the nuclear periphery. J Virol 85:5350–5362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    Article  CAS  PubMed  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    Article  CAS  PubMed  Google Scholar 

  • McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533

    Article  CAS  PubMed  Google Scholar 

  • McNiven MA, Kim L, Krueger EW, Orth JD, Cao H, Wong TW (2000) Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol 151:187–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier O, Greber UF (2004) Adenovirus endocytosis. J Gene Med 6(Suppl 1):S152–S163

    Article  PubMed  Google Scholar 

  • Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP, Hemmi S, Greber UF (2002) Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 158:1119–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535

    Article  CAS  PubMed  Google Scholar 

  • Mercer J, Helenius A (2009) Virus entry by macropinocytosis. Nat Cell Biol 11:510–520

    Article  CAS  PubMed  Google Scholar 

  • Merrifield CJ, Moss SE, Ballestrem C, Imhof BA, Giese G, Wunderlich I, Almers W (1999) Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nat Cell Biol 1:72–74

    Article  CAS  PubMed  Google Scholar 

  • Merrifield CJ, Feldman ME, Wan L, Almers W (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–698

    Article  CAS  PubMed  Google Scholar 

  • Mitchison T, Kirschner M (1988) Cytoskeletal dynamics and nerve growth. Neuron 1:761–772

    Article  CAS  PubMed  Google Scholar 

  • Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M (2000) A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol 2:441–448

    Article  CAS  PubMed  Google Scholar 

  • Naghavi MH, Goff SP (2007) Retroviral proteins that interact with the host cell cytoskeleton. Curr Opin Immunol 19:402–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, Neumann G, Halfmann P, Kawaoka Y (2010) Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog 6, e1001121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newsome TP, Scaplehorn N, Way M (2004) SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306:124–129

    Article  CAS  PubMed  Google Scholar 

  • Newsome TP, Weisswange I, Frischknecht F, Way M (2006) Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cell Microbiol 8:233–241

    Article  CAS  PubMed  Google Scholar 

  • Oh MJ, Akhtar J, Desai P, Shukla D (2010) A role for heparan sulfate in viral surfing. Biochem Biophys Res Commun 391:176–181

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa T, Volkman LE (1999) Nuclear F-actin is required for AcMNPV nucleocapsid morphogenesis. Virology 264:1–4

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa T, Rowe AR, Volkman LE (2002) Identification of six Autographa californica multicapsid nucleopolyhedrovirus early genes that mediate nuclear localization of G-actin. J Virol 76:12281–12289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkawa T, Volkman LE, Welch MD (2010) Actin-based motility drives baculovirus transit to the nucleus and cell surface. J Cell Biol 190:187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelkmans L, Puntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–539

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576

    Article  CAS  PubMed  Google Scholar 

  • Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    Article  CAS  PubMed  Google Scholar 

  • Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265:23–32

    Article  CAS  PubMed  Google Scholar 

  • Raghu H, Sharma-Walia N, Veettil MV, Sadagopan S, Chandran B (2009) Kaposi’s sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells. J Virol 83:4895–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves PM, Bommarius B, Lebeis S, McNulty S, Christensen J, Swimm A, Chahroudi A, Chavan R, Feinberg MB, Veach D, Bornmann W, Sherman M, Kalman D (2005) Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat Med 11:731–739

    Article  CAS  PubMed  Google Scholar 

  • Rey O, Canon J, Krogstad P (1996) HIV-1 Gag protein associates with F-actin present in microfilaments. Virology 220:530–534

    Article  CAS  PubMed  Google Scholar 

  • Rietdorf J, Ploubidou A, Reckmann I, Holmstrom A, Frischknecht F, Zettl M, Zimmermann T, Way M (2001) Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat Cell Biol 3:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Roberts KL, Manicassamy B, Lamb RA (2015) Influenza A virus uses intercellular connections to spread to neighboring cells. J Virol 89:1537–1549

    Article  PubMed  CAS  Google Scholar 

  • Rohrmann GF, Erlandson MA, Theilmann DA (2013) The genome of a baculovirus isolated from Hemileuca sp. encodes a serpin ortholog. Virus Genes 47:357–364

    Article  CAS  PubMed  Google Scholar 

  • Rust MJ, Lakadamyali M, Zhang F, Zhuang X (2004) Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol 11:567–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA (2010) Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog 6, e1001110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saffarian S, Cocucci E, Kirchhausen T (2009) Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol 7, e1000191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez EG, Quintas A, Perez-Nunez D, Nogal M, Barroso S, Carrascosa AL, Revilla Y (2012) African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog 8, e1002754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schelhaas M, Ewers H, Rajamaki ML, Day PM, Schiller JT, Helenius A (2008) Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog 4, e1000148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schelhaas M, Shah B, Holzer M, Blattmann P, Kuhling L, Day PM, Schiller JT, Helenius A (2012) Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 8, e1002657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt FI, Mercer J (2012) Vaccinia virus egress: actin OUT with clathrin. Cell Host Microbe 12:263–265

    Article  CAS  PubMed  Google Scholar 

  • Schmidt FI, Bleck CK, Helenius A, Mercer J (2011) Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture. EMBO J 30:3647–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schudt G, Kolesnikova L, Dolnik O, Sodeik B, Becker S (2013) Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proc Natl Acad Sci U S A 110:14402–14407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9:310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson-Holley M, Ellis D, Fisher D, Elton D, McCauley J, Digard P (2002) A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301:212–225

    Article  CAS  PubMed  Google Scholar 

  • Snapper SB, Takeshima F, Anton I, Liu CH, Thomas SM, Nguyen D, Dudley D, Fraser H, Purich D, Lopez-Ilasaca M, Klein C, Davidson L, Bronson R, Mulligan RC, Southwick F, Geha R, Goldberg MB, Rosen FS, Hartwig JH, Alt FW (2001) N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat Cell Biol 3:897–904

    Article  CAS  PubMed  Google Scholar 

  • Spector I, Shochet NR, Kashman Y, Groweiss A (1983) Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 219:493–495

    Article  CAS  PubMed  Google Scholar 

  • Spudich JA (1989) In pursuit of myosin function. Cell Regul 1:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens JM, Galyov EE, Stevens MP (2006) Actin-dependent movement of bacterial pathogens. Nat Rev Microbiol 4:91–101

    Article  CAS  PubMed  Google Scholar 

  • Stradal TE, Rottner K, Disanza A, Confalonieri S, Innocenti M, Scita G (2004) Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol 14:303–311

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Whittaker GR (2007) Role of the actin cytoskeleton during influenza virus internalization into polarized epithelial cells. Cell Microbiol 9:1672–1682

    Article  CAS  PubMed  Google Scholar 

  • Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428

    Article  CAS  PubMed  Google Scholar 

  • Tahara M, Takeda M, Yanagi Y (2007) Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell-cell fusion. J Virol 81:6827–6836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taunton J (2001) Actin filament nucleation by endosomes, lysosomes and secretory vesicles. Curr Opin Cell Biol 13:85–91

    Article  CAS  PubMed  Google Scholar 

  • Taylor MJ, Lampe M, Merrifield CJ (2012) A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis. PLoS Biol 10, e1001302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas A, Mariani-Floderer C, Lopez-Huertas MR, Gros N, Hamard-Peron E, Favard C, Ohlmann T, Alcami J, Muriaux D (2015) Involvement of the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag particle release in CD4 T cells. J Virol 89:8162–8181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valderrama F, Cordeiro JV, Schleich S, Frischknecht F, Way M (2006) Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling. Science 311:377–381

    Article  CAS  PubMed  Google Scholar 

  • van der Schaar HM, Rust MJ, Chen C, van der Ende-Metselaar H, Wilschut J, Zhuang X, Smit JM (2008) Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4, e1000244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakimoto H, Shimodo M, Satoh Y, Kitagawa Y, Takeuchi K, Gotoh B, Itoh M (2013) F-actin modulates measles virus cell-cell fusion and assembly by altering the interaction between the matrix protein and the cytoplasmic tail of hemagglutinin. J Virol 87:1974–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Huang X, Huang Y, Hao X, Xu H, Cai M, Wang H, Qin Q (2014) Entry of a novel marine DNA virus, Singapore grouper iridovirus, into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner. J Virol 88:13047–13063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Zhang Y, Han S, Hu X, Zhou Y, Mu J, Pei R, Wu C, Chen X (2015) Identification of a novel regulatory sequence of actin nucleation promoting factor encoded by Autographa californica multiple nucleopolyhedrovirus. J Biol Chem 290:9533–9541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward BM, Moss B (2001) Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. J Virol 75:11651–11663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisswange I, Newsome TP, Schleich S, Way M (2009) The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility. Nature 458:87–91

    Article  CAS  PubMed  Google Scholar 

  • Welch MD, Mullins RD (2002) Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–288

    Article  CAS  PubMed  Google Scholar 

  • Wild TF, Malvoisin E, Buckland R (1991) Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J Gen Virol 72(Pt 2):439–442

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Zheng K, Ju H, Wang S, Pei Y, Ding W, Chen Z, Wang Q, Qiu X, Zhong M, Zeng F, Ren Z, Qian C, Liu G, Kitazato K, Wang Y (2012) Cofilin 1-mediated biphasic F-actin dynamics of neuronal cells affect herpes simplex virus 1 infection and replication. J Virol 86:8440–8451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarar D, Waterman-Storer CM, Schmid SL (2005) A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell 16:964–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder A, Yu D, Dong L, Iyer SR, Xu X, Kelly J, Liu J, Wang W, Vorster PJ, Agulto L, Stephany DA, Cooper JN, Marsh JW, Wu Y (2008) HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 134:782–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. Newsome .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marzook, N.B., Newsome, T.P. (2016). Viruses That Exploit Actin-Based Motility for Their Replication and Spread. In: Jockusch, B. (eds) The Actin Cytoskeleton. Handbook of Experimental Pharmacology, vol 235. Springer, Cham. https://doi.org/10.1007/164_2016_41

Download citation

Publish with us

Policies and ethics