Skip to main content

Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function

  • Chapter
  • First Online:
Book cover Pharmacology of Mitochondria

Abstract

Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140. doi:10.1038/24094

    Article  CAS  PubMed  Google Scholar 

  • Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304:87–90

    Article  CAS  PubMed  Google Scholar 

  • Barkho BZ, Munoz AE, Li X, Li L, Cunningham LA, Zhao X (2008) Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 26:3139–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonello S, Zähringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T, Görlach A (2007) Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 7:755–761

    Article  CAS  Google Scholar 

  • Boveris A, Cadenas E (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 54:311–314

    Article  CAS  PubMed  Google Scholar 

  • Bowie A, O’Neill LA (2000) Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 9:13–23

    Article  Google Scholar 

  • Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541

    Article  CAS  PubMed  Google Scholar 

  • Chandel NS (2014) Mitochondria as signaling organelles. BMC Biol 12:34. doi:10.1186/1741-7007-12-34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22:204–206

    Article  CAS  PubMed  Google Scholar 

  • Cochemé HM, Quin C, McQuaker SJ, Cabreiro F, Logan A, Prime TA, Abakumova I, Patel JV, Fearnley IM, James AM, Porteous CM, Smith RA, Saeed S, Carré JE, Singer M, Gems D, Hartley RC, Partridge L, Murphy MP (2011) Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab 13:340–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corn RA, Hunter C, Liou HC, Siebenlist U, Boothby MR (2005) Opposing roles for RelB and Bcl-3 in regulation of T-box expressed in T cells, GATA-3, and the effect of differentiation. J Immunol 175:2102–2110

    Article  CAS  PubMed  Google Scholar 

  • Cosentino-Gomes D, Rocco-Machado N, Meyer-Fernandes JR (2012) Cell signaling through protein kinase C oxidation and activation. Int J Mol Sci 13:10697–10721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406

    Article  CAS  PubMed  Google Scholar 

  • Das J, Chen CH, Yang L, Cohn L, Ray P, Ray A (2001) A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol 2:45–50

    Article  CAS  PubMed  Google Scholar 

  • Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ (2016) Protein oxidation and peroxidation. Biochem J 473:805–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, Griendling KK (2008) Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 45:1340–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiMauro S, Schon EA (2006) The mitochondrial respiratory chain and its disorders. In: DiMauro S, Hirano M, Schon EA (eds) Mitochondrial medicine. Informa, Abington, pp 7–26

    Chapter  Google Scholar 

  • Dirsch VM, Gerbes AL, Vollmar AM (1998) Ajoene, a compound of garlic, induces apoptosis in human promyeloleukemic cells, accompanied by generation of reactive oxygen species and activation of nuclear factor kappaB. Mol Pharmacol 53:402–407

    CAS  PubMed  Google Scholar 

  • Fang P, Shi HY, Wu XM, Zhang YH, Zhong YJ, Deng WJ, Zhang YP, Xie M (2016) Targeted inhibition of GATA-6 attenuates airway inflammation and remodeling by regulating caveolin-1 through TLR2/MyD88/NF-κB in murine model of asthma. Mol Immunol 75:144–150

    Article  CAS  PubMed  Google Scholar 

  • Finkel T (2012) Signal transduction by mitochondrial oxidants. J Biol Chem 287:4434–4440

    Article  CAS  PubMed  Google Scholar 

  • Ganesh Yerra V, Negi G, Sharma SS, Kumar A (2013) Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol 1:394–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghantous CM, Kobeissy FH, Soudani N, Rahman FA, Al-Hariri M, Itani HA, Sabra R, Zeidan A (2016) Mechanical stretch-induced vascular hypertrophy occurs through modulation of leptin synthesis-mediated ROS formation and GATA-4 nuclear translocation. Front Pharmacol 6:240. doi:10.3389/fphar.2015.00240, eCollection 2015

    Google Scholar 

  • Gloire G, Piette J (2009) Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal 11:2209–2222

    Article  CAS  PubMed  Google Scholar 

  • Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Goodman BE (2002) Transport of small molecules across cell membranes: water channels and urea transporters. Adv Physiol Educ 26:146–157

    Article  PubMed  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  CAS  PubMed  Google Scholar 

  • Gross J, Lapierre CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A 48:1014–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Rosenberger SF, Bowden GT (1999) Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis 20:2063–2073

    Article  CAS  PubMed  Google Scholar 

  • Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138–4142

    Article  CAS  PubMed  Google Scholar 

  • Hagen T (2012) Oxygen versus reactive oxygen in the regulation of HIF-1α: the balance tips. Biomed Res Int 2012:436981. doi:10.1155/2012/436981

    Google Scholar 

  • Halliwell B, Gutteridge JMC (2007a) Oxygen is a toxic gas – an introduction to oxygen toxicity and reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford, pp 1–29

    Google Scholar 

  • Halliwell B, Gutteridge JMC (2007b) Antioxidant defences: endogeneous and diet derived. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford, pp 79–186

    Google Scholar 

  • Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    Article  CAS  PubMed  Google Scholar 

  • Hao L, Nishimura T, Wo H, Fernandez-Patron C (2006) Vascular responses to alpha1-adrenergic receptors in small rat mesenteric arteries depend on mitochondrial reactive oxygen species. Arterioscler Thromb Vasc Biol 26:819–825

    Article  CAS  PubMed  Google Scholar 

  • Hawkins CL, Morgan PE, Davies MJ (2009) Quantification of protein modification by oxidants. Free Radic Biol Med 46:965–988

    Article  CAS  PubMed  Google Scholar 

  • Heissmeyer V, Krappmann D, Wulczyn FG, Scheidereit C (1999) NF-kappaB p105 is a target of IkappaB kinases and controls signal induction of Bcl-3-p50 complexes. EMBO J 18:4766–4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herscovitch M, Comb W, Ennis T, Coleman K, Yong S, Armstead B, Kalaitzidis D, Chandani S, Gilmore TD (2008) Intermolecular disulfide bond formation in the NEMO dimer requires Cys54 and Cys347. Biochem Biophys Res Commun 367:103–108

    Article  CAS  PubMed  Google Scholar 

  • Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421

    Article  PubMed  CAS  Google Scholar 

  • Hulboy DL, Rudolph LA, Matrisian LM (1997) Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod 3:27–45

    Article  CAS  PubMed  Google Scholar 

  • Hwang AB, Ryu EA, Artan M, Chang HW, Kabir MH, Nam HJ, Lee D, Yang JS, Kim S, Mair WB, Lee C, Lee SS, Lee SJ (2014) Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 111:E4458–E4467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ (2007) Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7:106–118

    Article  CAS  PubMed  Google Scholar 

  • Indo HP, Yen H-C, Nakanishi I, Matsumoto K, Tamura M, Nagano Y, Matsui H, Gusev O, Cornette R, Okuda T, Minamiyama Y, Ichikawa H, Suenaga S, Oki M, Sato T, Ozawa T, St Clair DK, Majima HJ (2015) A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr 56:1–7

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36:1208–1213

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Ye P, Matsumiya T, Tanji K, Ozaki T (2015) Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J Clin Biochem Nutr 56:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamaluddin M, Wang S, Boldogh I, Tian B, Brasier AR (2007) TNFalpha-induced NF-kappaB/RelA Ser(276) phosphorylation and enhanceosome formation is mediated by an ROS-dependent PKAc pathway. Cell Signal 19:1419–1433

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63:218–242

    Article  CAS  PubMed  Google Scholar 

  • Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77:990–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, Park H, Kim SS, Choe W, Kang I, Ha J (2008) Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 29:713–721

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2:673–682

    Article  CAS  PubMed  Google Scholar 

  • Kalyanaraman B (2011) Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species. Biochem Soc Trans 39:1221–1225

    Article  CAS  PubMed  Google Scholar 

  • Kamata H, Manabe T, Oka S, Kamata K, Hirata H (2002) Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 519:231–237

    Article  CAS  PubMed  Google Scholar 

  • Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  CAS  PubMed  Google Scholar 

  • Kerr RA (2005) Earth science. The story of O2. Science 308:1730–1732

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Yamamoto M (2006) Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 46:113–140

    Article  CAS  PubMed  Google Scholar 

  • Ku PM, Chen LJ, Liang JR, Cheng KC, Li YX, Cheng JT (2011) Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility. Cardiovasc Diabetol 10:57. doi:10.1186/1475-2840-10-57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazaro JL, Izzo V, Meaume S, Davies AH, Lobmann R, Uccioli L (2016) Elevated levels of matrix metalloproteinases and chronic wound healing: an updated review of clinical evidence. J Wound Care 25:277–287

    Article  CAS  PubMed  Google Scholar 

  • Lentjes MH, Niessen HE, Akiyama Y, de Bruïne AP, Melotte V, van Engeland M (2016) The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med 18:e3

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13:1137–1143

    CAS  PubMed  Google Scholar 

  • Liu J, Yoshida Y, Yamashita U (2008) DNA-binding activity of NFkappaB and phosphorylation of p65 are induced by N-acetylcysteine through phosphatidylinositol (PI) 3-kinase. Mol Immunol 45:3984–3989

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Wahl LM (2005) Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes. J Immunol 175:5423–5429

    Article  CAS  PubMed  Google Scholar 

  • Majima HJ, Oberley TD, Furukawa K, Mattson MP, Yen HC, Szweda LI, St Clair DK (1998) Prevention of mitochondrial injury by manganese superoxide dismutase reveals a primary mechanism for alkaline-induced cell death. J Biol Chem 273:8217–8224

    Article  CAS  PubMed  Google Scholar 

  • Majima HJ, Indo HP, Tomita K, Iwashita Y, Suzuki H, Masuda D, Shimazu T, Tanigaki F, Umemura S, Yano S, Fukui K, Higashibata A, Yamazaki TQ, Kameyama M, Suenaga S, Sato T, Yen H-C, Gusev O, Okuda T, Matsui H, Ozawa T, Ishioka N (2009) Bio-assessment of risk in long-term manned space exploration – cell death factors in space radiation and/or microgravity: a review. Biol Sci Space 23:43–53

    Article  Google Scholar 

  • Majima HJ, Indo HP, Suenaga S et al (2011a) Mitochondria as source of free radicals. In: Naito Y, Suematsu M, Yoshikawa T (eds) Free radical biology in digestive diseases, Front Gastrointest Res, vol 29. Karger, Basel, pp 12–22

    Google Scholar 

  • Majima HJ, Indo HP, Suenaga S, Matsui H, Yen HC, Ozawa T (2011b) Mitochondria as possible pharmaceutical targets for the effects of vitamin E and its homologues in oxidative stress-related diseases. Curr Pharm Des 17:2190–2195

    Article  CAS  PubMed  Google Scholar 

  • Majima HJ, Indo HP, Nakanishi I, Suenaga S, Matsumoto K, Matsui H, Minamiyama Y, Ichikawa H, Yen H-C, Hawkins CL, Davies MJ, Ozawa T, St Clair DK (2016) Chasing great paths of helmut sies “oxidative stress”. Arch Biochem Biophys 595:54–60

    Article  CAS  PubMed  Google Scholar 

  • McCommis KS, Baines CP (2012) The role of VDAC in cell death: friend or foe? Biochim Biophys Acta 1818:1444–1450

    Article  CAS  PubMed  Google Scholar 

  • Mekhail K, Gunaratnam L, Bonicalzi ME, Lee S (2004) HIF activation by pH-dependent nucleolar sequestration of VHL. Nat Cell Biol 6:642–647

    Article  CAS  PubMed  Google Scholar 

  • Mittal R, Patel AP, Debs LH, Nguyen D, Patel K, Grati M, Mittal J, Yan D, Chapagain P, Liu XZ (2016) Intricate functions of matrix metalloproteinases in physiological and pathological conditions. J Cell Physiol 231:2599–2621

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115

    Article  CAS  PubMed  Google Scholar 

  • Murray TV, Smyrnias I, Shah AM, Brewer AC (2013) NADPH oxidase 4 regulates cardiomyocyte differentiation via redox activation of c-Jun protein and the cis-regulation of GATA-4 gene transcription. J Biol Chem 288:15745–15759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naumann M, Wulczyn FG, Scheidereit C (1993) The NF-kappa B precursor p105 and the proto-oncogene product Bcl-3 are I kappa B molecules and control nuclear translocation of NF-kappa B. EMBO J 12:213–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagé EL, Chan DA, Giaccia AJ, Levine M, Richard DE (2008) Hypoxia-inducible factor-1alpha stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion. Mol Biol Cell 19:86–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng HB, Libby P, Liao JK (1995) Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem 270:14214–14219

    Article  CAS  PubMed  Google Scholar 

  • Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21:1104–1117

    Article  CAS  PubMed  Google Scholar 

  • Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, Paemen L, Masure S, Willemze R, Opdenakker G (1999) Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci U S A 96:10863–10868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qutub AA, Popel AS (2008) Reactive oxygen species regulate hypoxia-inducible factor 1alpha differentially in cancer and ischemia. Mol Cell Biol 28:5106–5119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe PJ, O’Rourke JF, Maxwell PH, Pugh CW (1998) Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol 201:1153–1162

    CAS  PubMed  Google Scholar 

  • Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285

    Article  CAS  PubMed  Google Scholar 

  • Salway JG (2004) Metabolism of one molecule of glucose yields 31 (or should be 38?) molecules of ATP. In: Salway JG (ed) Metabolism at a glance, 3rd edn. Blackwell, Malden, pp 20–21

    Google Scholar 

  • Schieven GL, Kirihara JM, Myers DE, Ledbetter JA, Uckun FM (1993) Reactive oxygen intermediates activate NF-kappa B in a tyrosine kinase-dependent mechanism and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in human lymphocytes. Blood 82:1212–1220

    CAS  PubMed  Google Scholar 

  • Schoonbroodt S, Piette J (2000) Oxidative stress interference with the nuclear factor-kappa B activation pathways. Biochem Pharmacol 60:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19:176–182

    Article  CAS  Google Scholar 

  • Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163:560–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shatynski KE, Chen H, Kwon J, Williams MS (2012) Decreased STAT5 phosphorylation and GATA-3 expression in NOX2-deficient T cells: role in T helper development. Eur J Immunol 42:3202–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH (1997) A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J 16:3965–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small CD, Crawford BD (2016) Matrix metalloproteinases in neural development: a phylogenetically diverse perspective. Neural Regen Res 11:357–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 792639. doi:10.1155/2011/792639

    Google Scholar 

  • Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258

    Article  CAS  PubMed  Google Scholar 

  • Stadtman ER, Berlett BS (1991) Fenton chemistry. Amino acid oxidation. J Biol Chem 266:17201–17211

    CAS  PubMed  Google Scholar 

  • Stefano ME, Herrero MT (2016) The multifaceted role of metalloproteinases in physiological and pathological conditions in embryonic and adult brains. Prog Neurobiol. doi:10.1016/j.pneurobio.2016.08.002

    PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB (2003) Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem 278:24233–24241

    Article  CAS  PubMed  Google Scholar 

  • Takeshige K, Minakami S (1979) NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem J 180:129–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    CAS  PubMed  Google Scholar 

  • Thornburg NJ, Pathmanathan R, Raab-Traub N (2003) Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma. Cancer Res 63:8293–8301

    CAS  PubMed  Google Scholar 

  • Tradtrantip L, Tajima M, Li L, Verkman AS (2009) Aquaporin water channels in transepithelial fluid transport. J Med Invest 56 Suppl:179–184

    Article  PubMed  Google Scholar 

  • Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadley AJ, Turner JE, Aldred S (2016) Factors influencing post-exercise plasma protein carbonyl concentration. Free Radic Res 50:375–384

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wu M (2015) An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci Rep 5:7949. doi:10.1038/srep07949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292:H2023–H2031

    Article  CAS  PubMed  Google Scholar 

  • Zhang HJ, Zhao W, Venkataraman S, Robbins ME, Buettner GR, Kregel KC, Oberley LW (2002) Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J Biol Chem 277:20919–20926

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H (2014) HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep 4:3793. doi:10.1038/srep03793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (C) (No. 22592093 to H.J.M.) and the Strategic Promotion Program for Basic Nuclear Research (to H.J.M.) of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN) (to H.J.M.) by the Ministry of Agriculture, Forestry and Fisheries of Japan. M.J.D. gratefully acknowledges financial support from the Novo Nordisk Foundation (Laureate Research Grant NNF13OC0004294).

Conflict of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroko P. Indo , Clare L. Hawkins or Hideyuki J. Majima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Indo, H.P. et al. (2016). Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function. In: Singh, H., Sheu, SS. (eds) Pharmacology of Mitochondria. Handbook of Experimental Pharmacology, vol 240. Springer, Cham. https://doi.org/10.1007/164_2016_117

Download citation

Publish with us

Policies and ethics