Skip to main content

Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands

  • Chapter
  • First Online:
Histamine and Histamine Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 241))

Abstract

Several experimental techniques to analyse histamine receptors are available, e.g. pharmacological characterisation of known or new compounds by different types of assays or mutagenesis studies. To obtain insights into the histamine receptors on a molecular and structural level, crystal structures have to be determined and molecular modelling studies have to be performed. It is widely accepted to generate homology models of the receptor of interest based on an appropriate crystal structure as a template and to refine the resulting models by molecular dynamic simulations. A lot of modelling techniques, e.g. docking, QSAR or interaction fingerprint methods, are used to predict binding modes of ligands and pharmacological data, e.g. affinity or even efficacy. However, within the last years, molecular dynamic simulations got more and more important: First of all, molecular dynamic simulations are very helpful to refine the binding mode of a ligand to a histamine receptor, obtained by docking studies. Furthermore, with increasing computational performance it got possible to simulate complete binding pathways of ions or ligands from the aqueous extracellular phase into the allosteric or orthosteric binding pocket of histamine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

E2-loop:

Extracellular loop E2

GPCR:

G protein-coupled receptor

gpH1R:

Guinea-pig histamine H1 receptor

h5-HT1BR:

Human serotonine 5-HT1B receptor

h5-HT2BR:

Human serotonine 5-HT2B receptor

hD3R:

Human dopamine D3 receptor

hH1R:

Human histamine H1 receptor

hH2R:

Human histamine H2 receptor

hH3R:

Human histamine H3 receptor

hH4R:

Human histamine H4 receptor

hM2R:

Human muscarinic M2 receptor

hβ2R:

Human adrenergic β2 receptor

MD:

Molecular dynamics

MM:

Molecular mechanics

QM:

Quantum mechanics

QSAR:

Quantitative structure activity relationship

tβ1R:

Turkey adrenergic β1 receptor

xHxR:

Different species of the four histamine receptor subtypes

References

  • Arora B, Coudrat T, Wootten D, Christopoulos A, Noronha SB, Sexton PM (2016) Prediction of loops in G protein-coupled receptor homology models: effect of imprecise surroundings and constraints. J Chem Inf Model 56:671–686

    Article  CAS  PubMed  Google Scholar 

  • Bakker RA, Weiner DM, ter Laak T, Beuming T, Zuiderveld OP, Edelbroek M, Hacksell U, Timmerman H, Brann MR, Leurs R (2004) 8R-lisuride is a potent stereospecific histamine H1-receptor partial agonist. Mol Pharmacol 65:538–549

    Article  CAS  PubMed  Google Scholar 

  • Beuming T, Sherman W (2012) Current assessment of docking into GPCR crystal structures and homology models: successes, challenges, and guidelines. J Chem Inf Model 52:3263–3277

    Article  CAS  PubMed  Google Scholar 

  • Beuming T, Lenselink B, Pala D, McRobb F, Repasky M, Sherman W (2015) Docking and virtual screening strategies for GPCR drug discovery. Methods Mol Biol 1335:251–276

    Article  PubMed  Google Scholar 

  • Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunskole I, Strasser A, Seifert R, Buschauer A (2011) Role of the second and third extracellular loops of the histamine H(4) receptor in receptor activation. Naunyn Schmiedebergs Arch Pharmacol 384:301–317

    Article  CAS  PubMed  Google Scholar 

  • Bruysters M, Pertz HH, Teunissen A, Bakker RA, Gillard M, Chatelain P, Schunack W, Timmerman H, Leurs R (2004) Mutational analysis of the histamine H1-receptor binding pocket of histaprodifens. Eur J Pharmacol 487:55–63

    Article  CAS  PubMed  Google Scholar 

  • Bruysters M, Jongejan A, Gillard M, van de Manakker F, Bakker RA, Chatelain P, Leurs R (2005) Pharmacological differences between human and guinea pig histamine H1 receptors: Asn84 (2.61) as key residue within an additional binding pocket in the H1 receptor. Mol Pharmacol 67:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari R, Heim AJ, Li Z (2015) Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions. J Comput Aided Mol Des 29:413–420

    Article  CAS  PubMed  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz’min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57:4977–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with D2/D3 selective antagonist. Science 330:1091–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christopher JA, Brown J, Dore AS, Errey JC, Koglin M, Marshall FH, Myszka DG, Rich RL, Tate CG, Tehan B, Warne T, Congreve M (2013) Biophysical fragment screening of the beta1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design. J Med Chem 56:3446–3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciancetta A, Sabbadin D, Federico S, Spalluto G, Moro S (2015) Advances in computational techniques to study GPCR-ligand recognition. Trends Pharmacol Sci 36:878–890

    Article  CAS  PubMed  Google Scholar 

  • Costanzi S (2012) Homology modeling of class a G protein-coupled receptors. Methods Mol Biol 857:259–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costanzi S (2013) Modeling G protein-coupled receptors and their interactions with ligands. Curr Opin Struct Biol 23:185–190

    Article  CAS  PubMed  Google Scholar 

  • Damale MG, Harke SN, Kalam Khan FA, Shinde DB, Sangshetti JN (2014) Recent advances in multidimensional QSAR (4D-6D): a critical review. Mini Rev Med Chem 14:35–55

    Article  CAS  PubMed  Google Scholar 

  • Darras FH, Pockes S, Huang G, Wehle S, Strasser A, Wittmann HJ, Nimczick M, Sotriffer CA, Decker M (2014) Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists. ACS Chem Nerosci 5:225–242

    Article  CAS  Google Scholar 

  • de Graaf C, Rognan D (2009) Customizing G Protein-coupled receptor models for structure-based virtual screening. Curr Pharm Des 15:4026–4048

    Article  PubMed  Google Scholar 

  • Deng Z, Chuaqui C, Singh J (2004) Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J Med Chem 47:337–344

    Article  CAS  PubMed  Google Scholar 

  • Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A 108:13118–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452

    Article  CAS  PubMed  Google Scholar 

  • Elz S, Kramer K, Pertz HH, Detert H, ter Laak AM, Kuhne R, Schunack W (2000) Histaprodifens: synthesis, pharmacological in vitro evaluation, and molecular modeling of a new class of highly active and selective histamine H(1)-receptor agonists. J Med Chem 43:1071–1084

    Article  CAS  PubMed  Google Scholar 

  • Filizola ME (2014) G protein-coupled receptors—modeling and simulation. Springer, Dordrecht. ISBN 978-94-007-7423-0

    Google Scholar 

  • Filizola M, Carteni-Farina M, Perez JJ (1999) Modeling the 3D structure of rhodopsin using a de novo approach to build G-protein-coupled receptors. J Phys Chem B 103:2520–2527

    Article  CAS  Google Scholar 

  • Fiser A (2010) Template-based protein structure modeling. Methods Mol Biol 673:73–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geyer R, Nordemann U, Strasser A, Wittmann HJ, Buschauer A (2016) Conformational restriction and enantioseparation increase potency and selectivity of cyanoguanidine-type histamine H4 receptor agonists. J Med Chem 59:3452–3470

    Article  CAS  PubMed  Google Scholar 

  • Goldfeld DA, Zhu K, Beuming T, Friesner RA (2011) Successful prediction of the intra- and extracellular loops of four G-protein-coupled receptors. Proc Natl Acad Sci U S A 108:8275–8280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 Ã… structure of the human beta2-adrenergic receptor. Structure 16:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heifetz A, Chudyk EI, Gleave L, Aldeghi M, Cherezov V, Fedorov DG, Biggin PC, Bodkin MJ (2016a) The fragment molecular orbital method reveals new insight into the chemical nature of GPCR-ligand interactions. J Chem Inf Model 56:159–172

    Article  CAS  PubMed  Google Scholar 

  • Heifetz A, James T, Morao I, Bodkin MJ, Biggin PC (2016b) Guiding lead optimization with GPCR structure modeling and molecular dynamics. Curr Opin Pharmacol 30:14–21

    Article  CAS  PubMed  Google Scholar 

  • Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Chen S, Zhang JJ, Huang XY (2013) Crystal structure of oligomeric beta1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat Struct Mol Biol 20:419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CY, Olieric V, Ma P, Howe N, Vogeley L, Liu X, Warshamanage R, Weinert T, Panepucci E, Kobilka B, Diederichs K, Wang M, Caffrey M (2016) In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallogr D Struct Biol 72:93–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin JJ, Shoichet BK (2016) Docking screens for novel ligands conferring new biology. J Med Chem 59:4103–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Istyastono EP, Nijmeijer S, Lim HD, van de Stolpe A, Roumen L, Kooistra AJ, Vischer HF, de Esch IJ, Leurs R, de Graaf C (2011) Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies. J Med Chem 54:8136–8147

    Article  CAS  PubMed  Google Scholar 

  • Jongejan A, Bruysters M, Ballesteros JA, Haaksma E, Bakker RA, Pardo L, Leurs R (2005) Linking agonist binding to histamine H1 receptor activation. Nat Chem Biol 1:98–103

    Article  CAS  PubMed  Google Scholar 

  • Jongejan A, Lim HD, Smits RA, de Esch IJ, Haaksma E, Leurs R (2008) Delineation of agonist binding to the human histamine H4 receptor using mutational analysis, homology modeling, and ab initio calculations. J Chem Inf Model 48:1455–1463

    Article  CAS  PubMed  Google Scholar 

  • Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 39:233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss R, Noszal B, Racz A, Falus A, Eros D, Keseru GM (2008) Binding mode analysis and enrichment studies on homology models of the human histamine H4 receptor. Eur J Med Chem 43:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Koehler Leman J, Ulmschneider MB, Gray JJ (2015) Computational modeling of membrane proteins. Proteins 83:1–24

    Article  CAS  PubMed  Google Scholar 

  • Kooistra AJ, Kuhne S, De Esch IJ, Leurs R, De Graaf C (2013) A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design. Br J Pharmacol 170:101–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooistra AJ, de Graaf C, Timmerman H (2014) The receptor concept in 3D: from hypothesis and metaphor to GPCR-ligand structures. Neurochem Res 39:1850–1861

    Article  CAS  PubMed  Google Scholar 

  • Kooistra AJ, Vischer HF, McNaught-Flores D, Leurs R, de Esch IJ, de Graaf C (2016) Function-specific virtual screening for GPCR ligands using a combined scoring method. Sci Rep 6:28288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalainen JT, Christiaans JAM, Ropponen R, Poso A, Perakyla M, Vepsalainen J, Laatikainen R, Gynther J (2000) A proton relay process as the mechanism of activation of the histamine H3-receptor determined by 1H NMR and ab initio quantum mechanical calculations. J Am Chem Soc 122:6989–6996

    Article  CAS  Google Scholar 

  • Kuhne S, Kooistra AJ, Bosma R, Bortolato A, Wijtmans M, Vischer HF, Mason JS, de Graaf C, de Esch IJ, Leurs R (2016) Identification of ligand binding hot spots of the histamine H1 receptor following structure-based fragment optimization. J Med Chem 59:9047–9061

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Ghosh E, Shukla AK (2015) Emerging approaches to GPCR ligand screening for drug discovery. Trends Mol Med 21:687–701

    Article  CAS  PubMed  Google Scholar 

  • Leschke C, Elz S, Garbarg M, Schunack W (1995) Synthesis and histamine H1 receptor agonist activity of a series of 2-phenylhistamines, 2-heteroarylhistamines, and analogues. J Med Chem 38:1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Leslie AG, Warne T, Tate CG (2015) Ligand occupancy in crystal structure of beta1-adrenergic G protein-coupled receptor. Nat Struct Mol Biol 22:941–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levoin N, Labeeuw O, Billot X, Calmels T, Danvy D, Krief S, Berrebi-Bertrand I, Lecomte JM, Schwartz JC, Capet M (2016) Discovery of nanomolar ligands with novel scaffolds for the histamine H4 receptor by virtual screening. Eur J Med Chem 125:565–572

    Article  PubMed  CAS  Google Scholar 

  • Lim HD, Jongejan A, Bakker RA, Haaksma E, de Esch IJ, Leurs R (2008) Phenylalanine 169 in the second extracellular loop of the human histamine H4 receptor is responsible for the difference in agonist binding between human and mouse H4 receptors. J Pharmacol Exp Ther 327:88–96

    Article  CAS  PubMed  Google Scholar 

  • Malinowska B, Piszcz J, Schlicker E, Kramer K, Elz S, Schunack W (1999) Histaprodifen, methylhistaprodifen, and dimethylhistaprodifen are potent H1-receptor agonists in the pithed and in the anaesthetized rat. Naunyn Schmiedebergs Arch Pharmacol 359:11–16

    Article  CAS  PubMed  Google Scholar 

  • McRobb FM, Negri A, Beuming T, Sherman W (2016) Molecular dynamics techniques for modeling G protein-coupled receptors. Curr Opin Pharmacol 30:69–75

    Article  CAS  PubMed  Google Scholar 

  • Menghin S, Pertz HH, Kramer K, Seifert R, Schunack W, Elz S (2003) N(alpha)-imidazolylalkyl and pyridylalkyl derivatives of histaprodifen: synthesis and in vitro evaluation of highly potent histamine H(1)-receptor agonists. J Med Chem 46:5458–5470

    Article  CAS  PubMed  Google Scholar 

  • Miller-Gallacher JL, Nehme R, Warne T, Edwards PC, Schertler GF, Leslie AG, Tate CG (2014) The 2.1 A resolution structure of cyanopindolol-bound beta1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS One 9:e92727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mobarec JC, Sanchez R, Filizola M (2009) Modern homology modeling of G-protein coupled receptors: which structural template to use? J Med Chem 52:5207–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mordalski S, Kosciolek T, Kristiansen K, Sylte I, Bojarski AJ (2011) Protein binding site analysis by means of structural interaction fingerprint patterns. Bioorg Med Chem Lett 21:6816–6819

    Article  CAS  PubMed  Google Scholar 

  • Moukhametzianov R, Warne T, Edwards PC, Serrano-Vega MJ, Leslie AG, Tate CG, Schertler GF (2011) Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta1-adrenergic receptor. Proc Natl Acad Sci U S A 108:8228–8232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munk C, Harpsoe K, Hauser AS, Isberg V, Gloriam DE (2016) Integrating structural and mutagenesis data to elucidate GPCR ligand binding. Curr Opin Pharmacol 30:51–58

    Article  CAS  PubMed  Google Scholar 

  • Naporra F, Gobleder S, Wittmann HJ, Spindler J, Bodensteiner M, Bernhardt G, Hubner H, Gmeiner P, Elz S, Strasser A (2016) Dibenzo[b,f][1,4]oxazepines and dibenzo[b,e]oxepines: Influence of the chlorine substitution pattern on the pharmacology at the H1R, H4R, 5-HT2AR and other selected GPCRs. Pharmacol Res 113:610–625

    Article  CAS  PubMed  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  • Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WL, Stark H, Thurmond RL, Haas HL (2015) International union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacol Rev 67:601–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peeters MC, van Westen GJ, Li Q, IJzerman AP (2011) Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol Sci 32:35–42

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sansihvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crystal structure of the human beta 2 adrenergic G protein-coupled receptor. Nature 450:383–387

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011a) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011b) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI, Garcia KC, Kobilka BK (2013) Adrenaline-activated structure of beta2-adrenoceptor stabilized by an engineered nanobody. Nature 502:575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez D, Bello X, Gutierrez-de-Teran H (2012) Molecular modelling of G protein-coupled receptors through the web. Mol Inform 31:334–341

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum DM, Zhang D, Lyons J, Holl R, Aragao D, Arlow DH, Rasmussen SGF, Choi H-J, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011) Structure and function of an irreversible agonist-beta2 adrenoceptor complex. Nature 469:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandal M, Duy TP, Cona M, Zung H, Carloni P, Musiani F, Giorgetti A (2013) GOMoDo: a GPCRs online modeling and docking webserver. PLoS One 8:e74092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider EH, Seifert R (2016) Pharmacological characterization of human histamine receptors and histamine receptor mutants in the Sf9 cell expression system. Handb Exp Pharmacol. doi:10.1007/164_2016_124

    Google Scholar 

  • Schneider EH, Schnell D, Papa D, Seifert R (2009) High constitutive activity and a G-protein-independent high-affinity state of the human histamine H(4)-receptor. Biochemistry 48:1424–1438

    Article  CAS  PubMed  Google Scholar 

  • Schnell D, Seifert R (2010) Modulation of histamine H(3) receptor function by monovalent ions. Neurosci Lett 472:114–118

    Article  CAS  PubMed  Google Scholar 

  • Schultes S, Nijmeijer S, Engelhardt H, Kooistra AJ, Vischer HF, de Esch IJP, Haaksma EEJ, Leurs R, de Graaf C (2013) Mapping histamine H4 receptor-ligand binding modes. Med Chem Commun 4:193–204

    Article  CAS  Google Scholar 

  • Seifert R, Wenzel-Seifert K, Bürckstümmer T, Pertz HH, Schunack W, Dove S, Buschauer A, Elz S (2003) Multiple differences in agonist and antagonist pharmacology between human and guinea-pig histamine H1-receptor. J Pharmacol Exp Ther 305:1104–1115

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Strasser A, Schneider EH, Neumann D, Dove S, Buschauer A (2013) Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci 34:33–58

    Article  CAS  PubMed  Google Scholar 

  • Selent J, Sanz F, Pastor M, De Fabritiis G (2010) Induced effects of sodium ions on dopaminergic G-protein coupled receptors. PLoS Comput Biol 6(8) pii: e1000884

    Google Scholar 

  • Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H-1 receptor complex with doxepin. Nature 475:65–U82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiroishi M, Kobayashi T (2016) Structural analysis of the histamine H1 receptor. Handb Exp Pharmacol. doi:10.1007/164_2016_10

    PubMed  Google Scholar 

  • Sirci F, Istyastono EP, Vischer HF, Kooistra AJ, Nijmeijer S, Kuijer M, Wijtmans M, Mannhold R, Leurs R, de Esch IJ, de Graaf C (2012) Virtual fragment screening: discovery of histamine H3 receptor ligands using ligand-based and protein-based molecular fingerprints. J Chem Inf Model 52:3308–3324

    Article  CAS  PubMed  Google Scholar 

  • Smits RA, de Esch IJ, Zuiderveld OP, Broeker J, Sansuk K, Guaita E, Coruzzi G, Adami M, Haaksma E, Leurs R (2008a) Discovery of quinazolines as histamine H4 receptor inverse agonists using a scaffold hopping approach. J Med Chem 51:7855–7865

    Article  CAS  PubMed  Google Scholar 

  • Smits RA, Lim HD, Hanzer A, Zuiderveld OP, Guaita E, Adami M, Coruzzi G, Leurs R, de Esch IJ (2008b) Fragment based design of new H4 receptor-ligands with anti-inflammatory properties in vivo. J Med Chem 51:2457–2467

    Article  CAS  PubMed  Google Scholar 

  • Southan C (2016) Retrieving GPCR data from public databases. Curr Opin Pharmacol 30:38–43

    Article  CAS  PubMed  Google Scholar 

  • Strasser A (2009) Molecular modeling and QSAR-based design of histamine receptor ligands. Expert Opin Drug Discovery 4:1061–1075

    Article  CAS  Google Scholar 

  • Strasser A, Wittmann HJ (2007) LigPath: a module for predictive calculation of a ligand’s pathway into a receptor-application to the gpH1-receptor. J Mol Model 13:209–218

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Wittmann HJ (2010) 3D-QSAR CoMFA study to predict orientation of suprahistaprodifens and phenoprodifens in the binding-pocket of four histamine H1-receptor species. Mol Inform 29:333–341

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Wittmann H-J (2013) Modelling of GPCRs—a practical handbook. Springer, Dordrecht

    Book  Google Scholar 

  • Strasser A, Striegl B, Wittmann HJ, Seifert R (2008a) Pharmacological profile of histaprodifens at four recombinant H1-receptor species isoforms. J Pharmacol Exp Ther 324:60–71

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Wittmann HJ, Seifert R (2008b) Ligand-specific contribution of the N terminus and E2-loop to pharmacological properties of the histamine H1-receptor. J Pharmacol Exp Ther 326:783–791

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Wittmann HJ, Kunze M, Elz S, Seifert R (2009) Molecular basis for the selective interaction of synthetic agonists with the human histamine H1-receptor compared with the guinea pig H1-receptor. Mol Pharmacol 75:454–465

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Wittmann H-J, Buschauer A, Schneider EH, Seifert R (2013) Species-dependent activities of GPCR ligands: lessons from histamine receptor orthologs. Trends Pharmacol Sci 34:13–32

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Wittmann HJ, Schneider EH, Seifert R (2015) Modulation of GPCRs by monovalent cations and anions. Naunyn Schmiedebergs Arch Pharmacol 388:363–380

    Article  CAS  PubMed  Google Scholar 

  • Tautermann CS, Seeliger D, Kriegel JM (2015) What can we learn from molecular dynamic simulations for GPCR drug design? Comput Struct Biotechnol J 13:111–121

    Article  CAS  PubMed  Google Scholar 

  • ter Laak AM, Timmerman H, Leurs R, Nederkoorn PH, Smit MJ, Donne-Op den Kelder GM (1995) Modelling and mutation studies on the histamine H1-receptor agonist binding site reveal different binding modes for H1-agonists: Asp116 (TM3) has a constitutive role in receptor stimulation. J Comput Aided Mol Des 9:319–330

    Article  PubMed  Google Scholar 

  • Thomas T, Fang Y, Yuriev E, Chalmers DK (2016) Ligand binding pathways of clozapine and haloperidol in the dopamine D2 and D3 receptors. J Chem Inf Model 56:308–321

    Article  CAS  PubMed  Google Scholar 

  • Vass M, Kooistra AJ, Ritschel T, Leurs R, de Esch IJ, de Graaf C (2016) Molecular interaction fingerprint approaches for GPCR drug discovery. Curr Opin Pharmacol 30:59–68

    Article  CAS  PubMed  Google Scholar 

  • Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GFX, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    Article  CAS  PubMed  Google Scholar 

  • Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10:95–115

    Article  CAS  PubMed  Google Scholar 

  • Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC (2010) Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 132:11443–11445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY, Liu W, Xu HE, Cherezov V, Roth BL, Stevens RC (2013) Structural features for functional selectivity at serotonin receptors. Science 340:615–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner E, Wittmann HJ, Elz S, Strasser A (2011) Mepyramine-JNJ7777120-hybrid compounds show high affinity to hH(1)R, but low affinity to hH(4)R. Bioorg Med Chem Lett 21:6274–6280

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E, McCorvy JD, Gao X, Zhou XE, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Roth BL, Cherezov V, Stevens RC, Xu HE (2013) Structural basis for molecular recognition at serotonin receptors. Science 340:610–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AG, Schertler GF, Tate CG (2011) The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 469:241–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warne T, Edwards PC, Leslie AG, Tate CG (2012) Crystal structures of a stabilized beta1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20:841–849

    Article  CAS  PubMed  Google Scholar 

  • Weichert D, Kruse AC, Manglik A, Hiller C, Zhang C, Hubner H, Kobilka BK, Gmeiner P (2014) Covalent agonists for studying G protein-coupled receptor activation. Proc Natl Acad Sci U S A 111:10744–10748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wifling D, Löffel K, Nordemann U, Strasser A, Bernhardt G, Dove S, Seifert R and Buschauer A (2015a) Molecular determinants for the high constitutive activity of the human histamine H4 receptor: functional studies on orthologues and mutants. Br J Pharmacol 172:785–798

    Google Scholar 

  • Wifling D, Bernhardt G, Dove S, Buschauer A (2015b) The extracellular loop 2 (ECL2) of the human histamine H4 receptor substantially contributes to ligand binding and constitutive activity. PLoS One 10:e0117185

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittmann HJ, Strasser A (2015) Binding pathway of histamine to the hH4R, observed by unconstrained molecular dynamics. Bioorg Med Chem Lett 25:1259–1268

    Article  CAS  PubMed  Google Scholar 

  • Wittmann HJ, Elz S, Seifert R, Strasser A (2011) N (alpha)-methylated phenylhistamines exhibit affinity to the hH(4)R-a pharmacological and molecular modelling study. Naunyn Schmiedebergs Arch Pharmacol 384:287–299

    Article  CAS  PubMed  Google Scholar 

  • Wittmann HJ, Seifert R, Strasser A (2014a) Mathematical analysis of the sodium sensitivity of the human histamine H3 receptor. In Silico Pharmacol 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittmann HJ, Seifert R, Strasser A (2014b) Sodium binding to hH3R and hH 4R—a molecular modeling study. J Mol Model 20:2394

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80:1715–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarnitzky T, Levit A, Niv MY (2010) Homology modeling of G-protein-coupled receptors with X-ray structures on the rise. Curr Opin Drug Discov Devel 13:317–325

    CAS  PubMed  Google Scholar 

  • Yuan S, Vogel H, Filipek S (2011) The role of water and sodium ions in the activation of the μ-opioid receptor. Angew Chem Int Ed 52:10112–10115

    Article  CAS  Google Scholar 

  • Yuriev E, Holien J, Ramsland PA (2015) Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J Mol Recognit 28:581–604

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yang J, Jang R, Zhang Y (2015) GPCR-I-TASSER: a hybrid approach to G protein-coupled receptor structure modeling and the application to the human genome. Structure 23:1538–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Weis WI, Kobilka BK (2012) N-terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor. PLoS One 7:e46039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Strasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strasser, A., Wittmann, HJ. (2017). Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands. In: Hattori, Y., Seifert, R. (eds) Histamine and Histamine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 241. Springer, Cham. https://doi.org/10.1007/164_2016_113

Download citation

Publish with us

Policies and ethics