Skip to main content

Neuroimmune Modulation of Gut Function

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 239))

Abstract

Neuroimmune communications are facilitated by the production of neurotransmitters by immune cells and the generation of immune mediators by immune cells, which form a functional entity called the “neuroimmune synapse.” There are several mechanisms that further facilitate neuroimmune interactions including the anatomic proximity between immune cells and nerves, the expression of receptors for neurotransmitters on immune cells and for immune mediators on nerves, and the receptor-mediated activation of intracellular signaling pathways that modulate nerve and immune phenotype and function. The bidirectional communication between nerves and immune cells is implicated in allostasis, a process that describes the continuous adaptation to an ever-changing environment. Neuroimmune interactions are amplified during inflammation by the influx of activated immune cells that significantly alter the microenvironment. In this context, the types of neurotransmitters released by activated neurons or immune cells can exert pro- or anti-inflammatory effects. Dysregulation of the enteric nervous system control of gastrointestinal functions, such as epithelial permeability and secretion as well as smooth muscle contractility, also contribute to the chronicity of inflammation. Persistent active inflammation in the gut leads to neuroimmune plasticity, which is a structural and functional remodeling in both the neural and immune systems. The importance of neuroimmune interactions has made them an emerging target in the development of novel therapies for GI pathologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson U, Tracey KJ (2012) Reflex principles of immunological homeostasis. Annu Rev Immunol 30:313–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antalis TM, Shea-Donohue T, Vogel SN et al (2007) Mechanisms of disease: protease functions in intestinal mucosal pathobiology. Nat Clin Pract Gastroenterol Hepatol 4:393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301

    Article  CAS  PubMed  Google Scholar 

  • Assas BM, Miyan JA, Pennock JL (2014) Cross-talk between neural and immune receptors provides a potential mechanism of homeostatic regulation in the gut mucosa. Mucosal Immunol 7:1283–1289

    Article  CAS  PubMed  Google Scholar 

  • Bai A, Lu N, Guo Y et al (2009) Modulation of inflammatory response via α2-adrenoceptor blockade in acute murine colitis. Clin Exp Immunol 156:353–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bain CC, Scott CL, Uronen-Hansson H et al (2013) Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 6:498–510

    Article  CAS  PubMed  Google Scholar 

  • Bamias G, Nyce MR, De La Rue SA et al (2005) New concepts in the pathophysiology of inflammatory bowel disease. Ann Intern Med 143:895–904

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Ryu SY, Lopez N et al (2012) Vagal stimulation modulates inflammation through a ghrelin mediated mechanism in traumatic brain injury. Inflammation 35:214–220

    Article  CAS  PubMed  Google Scholar 

  • Bedoui S, Gebhardt T, Gasteiger G et al (2016) Parallels and differences between innate and adaptive lymphocytes. Nat Immunol 17:490–494

    Article  CAS  PubMed  Google Scholar 

  • Bettelli E, Korn T, Oukka M et al (2008) Induction and effector functions of TH17 cells. Nature 453:1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Borovikova LV, Ivanova S, Zhang M et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  CAS  PubMed  Google Scholar 

  • Brun P, Giron MC, Qesari M et al (2013) Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145:1323–1333

    Article  CAS  PubMed  Google Scholar 

  • Bush TG, Savidge TC, Freeman TC et al (1998) Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93:189–201

    Article  CAS  PubMed  Google Scholar 

  • Cailotto C, Gomez-Pinilla PJ, Costes LM et al (2014) Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS One 9:e87785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camilleri M, Acosta A (2015) Relamorelin: a novel gastrocolokinetic synthetic ghrelin agonist. Neurogastroenterol Motil 27:324–332

    Article  CAS  PubMed  Google Scholar 

  • Camilleri M, Papathanasopoulos A, Odunsi ST (2009) Actions and therapeutic pathways of ghrelin for gastrointestinal disorders. Nat Rev Gastroenterol Hepatol 6:343–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camilleri M, Madsen K, Spiller R et al (2012) Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 24:503–512

    Article  CAS  PubMed  Google Scholar 

  • Capoccia E, Cirillo C, Gigli S et al (2015) Enteric glia: a new player in inflammatory bowel diseases. Int J Immunopathol Pharmacol 28:443–451

    Article  CAS  PubMed  Google Scholar 

  • Cenac N, Andrews CN, Holzhausen M et al (2007) Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Investig 117:636–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C-H, Pearce EL (2016a) Emerging concepts in immunotherapy—T cell metabolism as a therapeutic target. Nat Immunol 17:364–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C-H, Pearce EL (2016b) Emerging concepts of T cell metabolism as a target of immunotherapy. Nat Immunol 17:364–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper MD, Alder MN (2006) The evolution of adaptive immune systems. Cell 124:815–822

    Article  CAS  PubMed  Google Scholar 

  • Costantini TW, Bansal V, Krzyzaniak M et al (2010) Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am J Physiol Gastrointest Liver Physiol 299:G1308–G1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini TW, Krzyzaniak M, Cheadle GA et al (2012) Targeting α-7 nicotinic acetylcholine receptor in the enteric nervous system: a cholinergic agonist prevents gut barrier failure after severe burn injury. Am J Pathol 181:478–486

    Article  CAS  PubMed  Google Scholar 

  • Cua DJ, Kastelein RA (2006) TGF-[beta], a “double agent” in the immune pathology war. Nat Immunol 7:557–559

    Article  CAS  PubMed  Google Scholar 

  • De Giorgio R, Giancola F, Boschetti E et al (2012) Enteric glia and neuroprotection: basic and clinical aspects. Am J Physiol Gastrointest Liver Physiol 303:G887–G893

    Article  CAS  PubMed  Google Scholar 

  • de Jonge WJ (2013) The gut’s little brain in control of intestinal immunity. ISRN Gastroenterol 2013:630159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Jonge WJ, Ulloa L (2007) The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 151:915–929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Jonge WJ, van der Zanden EP, The FO et al (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 6:844–851

    Article  PubMed  CAS  Google Scholar 

  • Di Giovangiulio M, Verheijden S, Bosmans G et al (2015a) The neuromodulation of the intestinal immune system and its relevance in inflammatory bowel disease. Front Immunol 6:590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Giovangiulio M, Stakenborg N, Bosmans G et al (2015b) Ghrelin receptor modulates T helper cells during intestinal inflammation. Neurogastroenterol Motil 27:1542–1552

    Article  CAS  PubMed  Google Scholar 

  • Dustin ML (2012) Signaling at neuro/immune synapses. J Clin Investig 122:1149–1155

    Google Scholar 

  • Eskandari MK, Kalff JC, Billiar TR et al (1999) LPS-induced muscularis macrophage nitric oxide suppresses rat jejunal circular muscle activity. Am J Physiol Gastrointest Liver Physiol 277:G478–G486

    CAS  Google Scholar 

  • Fasano A, Shea-Donohue T (2005) Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol 2:416–422

    Article  CAS  PubMed  Google Scholar 

  • Fort MM, Cheung J, Yen D et al (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:985–995

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Pacheco R, Lluis C et al (2007) The emergence of neurotransmitters as immune modulators. Trends Immunol 28:400–407

    Article  CAS  PubMed  Google Scholar 

  • Fujihashi K, Kiyono H (2009) Mucosal immunosenescence: new developments and vaccines to control infectious diseases. Trends Immunol 30:334–343

    Article  CAS  PubMed  Google Scholar 

  • Fujino S, Andoh A, Bamba S et al (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerbe F, Sidot E, Smyth DJ et al (2016) Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:226–230

    Article  CAS  PubMed  Google Scholar 

  • Gourbeyre P, Berri M, Lippi Y et al (2015) Pattern recognition receptors in the gut: analysis of their expression along the intestinal tract and the crypt/villus axis. Physiol Rep 3:e12225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gren ST, Grip O (2016) Role of monocytes and intestinal macrophages in Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 22:1992–1998

    Article  PubMed  Google Scholar 

  • Hadis U, Wahl B, Schulz O et al (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34:237–246

    Article  CAS  PubMed  Google Scholar 

  • Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Hegazy AN, Powrie F (2015) Microbiota RORgulates intestinal suppressor T cells. Science 349:929–930

    Article  CAS  PubMed  Google Scholar 

  • Hori M, Nobe H, Horiguchi K et al (2008) MCP-1 targeting inhibits muscularis macrophage recruitment and intestinal smooth muscle dysfunction in colonic inflammation. Am J Physiol Cell Physiol 294:C391–C401

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung M-Y, Smrž D, Desai A et al (2013) IL-33 induces a hypo-responsive phenotype in human and mouse mast cells. J Immunol 190:531–538

    Article  CAS  PubMed  Google Scholar 

  • Kleinschek MA, Owyang AM, Joyce-Shaikh B, et al. (2007) IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 204:161–170

    Google Scholar 

  • Klose CSN, Artis D (2016) Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 17:765–774

    Article  CAS  PubMed  Google Scholar 

  • Lapointe TK, Basso L, Iftinca MC et al (2015) TRPV1 sensitization mediates postinflammatory visceral pain following acute colitis. Am J Physiol Gastrointest Liver Physiol 309:G87–G99

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Starkey PM, Gordon S (1985) Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J Exp Med 161:475–489

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Yamamoto T, Kuramoto H et al (2012) TRPV1 expressing extrinsic primary sensory neurons play a protective role in mouse oxazolone-induced colitis. Auton Neurosci 166:72–76

    Article  CAS  PubMed  Google Scholar 

  • Linden DR, Couvrette JM, Ciolino A et al (2005) Indiscriminate loss of myenteric neurones in the TNBS-inflamed guinea-pig distal colon. Neurogastroenterol Motil 17:751–760

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Ji R-R (2013) New insights into the mechanisms of itch: are pain and itch controlled by distinct mechanisms? Pflugers Arch 465(12):1671–1685. doi:10.1007/s00424-013-1284-2

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Weng H-J, Patel KN et al (2011) The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. Sci Signal 4:ra45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madden KB, Whitman L, Sullivan C et al (2002) Role of STAT6 and mast cells in IL-4- and IL-13-induced alterations in murine intestinal epithelial cell function. J Immunol 169:4417–4422

    Article  CAS  PubMed  Google Scholar 

  • Man Angela L, Bertelli E, Rentini S et al (2015) Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin Sci 129:515–527

    Article  CAS  PubMed  Google Scholar 

  • Manel N, Unutmaz D, Littman DR (2008) The differentiation of human TH-17 cells requires transforming growth factor-[beta] and induction of the nuclear receptor ROR[gamma]t. Nat Immunol 9:641–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolis KG, Karamooz N, Stevanovic K et al (2011) Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology 141:588–598.e2

    Article  PubMed  PubMed Central  Google Scholar 

  • Matteoli G, Gomez-Pinilla PJ, Nemethova A et al (2014) A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63:938–948

    Article  CAS  PubMed  Google Scholar 

  • Mawe GM (2015) Colitis-induced neuroplasticity disrupts motility in the inflamed and post-inflamed colon. J Clin Invest 125:949–955

    Article  PubMed  PubMed Central  Google Scholar 

  • McLean LP, Smith A, Cheung L et al (2015) Type 3 muscarinic receptors contribute to clearance of Citrobacter rodentium. Inflamm Bowel Dis 21:1860–1871

    Article  PubMed  PubMed Central  Google Scholar 

  • Meir M, Flemming S, Burkard N et al (2015) Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro. Am J Physiol Gastrointest Liver Physiol 309:G613–G624

    Article  CAS  PubMed  Google Scholar 

  • Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17:413–425

    Article  CAS  PubMed  Google Scholar 

  • Monticelli LA, Osborne LC, Noti M et al (2015) IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin–EGFR interactions. Proc Natl Acad Sci U S A 112:10762–10767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller SN, Gebhardt T, Carbone FR et al (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161

    Article  CAS  PubMed  Google Scholar 

  • Muller Paul A, Koscsó B, Rajani Gaurav M et al (2014) Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158:300–313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy CA, Langrish CL, Chen Y et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neunlist M, Aubert P, Toquet C et al (2003) Changes in chemical coding of myenteric neurones in ulcerative colitis. Gut 52:84–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neunlist M, Aubert P, Bonnaud S et al (2007) Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-β1-dependent pathway. Am J Physiol Gastrointest Liver Physiol 292:G231–G241

    Article  CAS  PubMed  Google Scholar 

  • Neunlist M, Van Landeghem L, Mahe MM et al (2013) The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol 10:90–100

    Article  CAS  PubMed  Google Scholar 

  • Neunlist M, Rolli-Derkinderen M, Latorre R et al (2014) Enteric glial cells: recent developments and future directions. Gastroenterology 147:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Nielsen OH, Kirman I, Rudiger N et al (2003) Upregulation of interleukin-12 and -17 in active inflammatory bowel disease. Scand J Gastroenterol 38:180–185

    Article  CAS  PubMed  Google Scholar 

  • Notari L, Riera DC, Sun R et al (2014) Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection. PLoS One 9:e84763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nussbaum JC, Van Dyken SJ, von Moltke J et al (2013) Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan D, Pearce EL (2015) Targeting T cell metabolism for therapy. Trends Immunol 36:71–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olofsson PS, Rosas-Ballina M, Levine YA et al (2012) Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev 248:188–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Ordovas-Montanes J, Rakoff-Nahoum S, Huang S et al (2015) The regulation of immunological processes by peripheral neurons in homeostasis and disease. Trends Immunol 36:578–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owyang AM, Zaph C, Wilson EH et al (2006) Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J Exp Med 203:843–849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pastorelli L, De Salvo C, Mercado JR et al (2013) Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics. Front Immunol 4:280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pochard C, Coquenlorge S, Jaulin J et al (2016) Defects in 15-HETE production and control of epithelial permeability by human enteric glial cells from patients with Crohn’s disease. Gastroenterology 150:168–180

    Article  CAS  PubMed  Google Scholar 

  • Pongratz G, Straub RH (2014) The sympathetic nervous response in inflammation. Arthritis Res Ther 16:504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reading NC, Kasper DL (2011) The starting lineup: key microbial players in intestinal immunity and homeostasis. Front Microbiol 2:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigo P, Erick R, Alexis MK (2010) Emerging evidence for the role of neurotransmitters in the modulation of T cell responses to cognate ligands. Cent Nerv Syst Agents Med Chem 10:65–83

    Article  Google Scholar 

  • Rosas-Ballina M, Olofsson PS, Ochani M et al (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:98–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders VM, Baker RA, Ramer-Quinn DS et al (1997) Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol 158:4200–4210

    CAS  PubMed  Google Scholar 

  • Savidge TC, Newman P, Pothoulakis C et al (2007) Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132:1344–1358

    Article  CAS  PubMed  Google Scholar 

  • Sedda S, Marafini I, Figliuzzi MM et al (2014) An overview of the role of innate lymphoid cells in gut infections and inflammation. Mediators Inflamm 2014:235460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharkey KA, Savidge TC (2014) Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 181:94–106

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Thomas PG (2014) The two faces of heterologous immunity: protection or immunopathology. J Leukoc Biol 95:405–416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shea-Donohue T, Urban JF Jr (2004) Gastrointestinal parasite and host interactions. Curr Opin Gastroenterol 20:3–9

    Article  PubMed  Google Scholar 

  • Shea-Donohue T, Sullivan C, Finkelman FD et al (2001) The role of IL-4 in Heligmosomoidespolygyrus-induced alterations in murine intestinal epithelial cell function. J Immunol 167:2234–2239

    Article  CAS  PubMed  Google Scholar 

  • Shea-Donohue T, Fasano A, Smith A et al (2010a) Enteric pathogens and gut function: role of cytokines and STATs. Gut Microbes 1:316–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Shea-Donohue T, Stiltz J, Zhao A et al (2010b) Mast cells. Curr Gastroenterol Rep 12:349–357

    Article  PubMed  PubMed Central  Google Scholar 

  • Shea-Donohue T, Notari L, Stiltz J et al (2010c) Role of enteric nerves in immune-mediated changes in protease-activated receptor 2 effects on gut function. Neurogastroenterol Motil 22:1138-e291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi H, Kokoeva MV, Inouye K et al (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Investig 116:3015–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih H-Y, Sciumè G, Mikami Y et al (2016) Developmental acquisition of regulomes underlies innate lymphoid cell functionality. Cell 165:1120–1133

    Article  CAS  PubMed  Google Scholar 

  • Sipos F, Leiszter K, Tulassay Z (2011) Effect of ageing on colonic mucosal regeneration. World J Gastroenterol 17:2981–2986

    Article  PubMed  PubMed Central  Google Scholar 

  • Snoek SA, Verstege MI, van der Zanden EP et al (2010) Selective α7 nicotinic acetylcholine receptor agonists worsen disease in experimental colitis. Br J Pharmacol 160:322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnenberg GF, Artis D (2015) Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med 21:698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stead RH (1992) Innervation of mucosal immune cells in the gastrointestinal tract. Reg Immunol 4:91–99

    CAS  PubMed  Google Scholar 

  • Straub RH, Wiest R, Strauch UG et al (2006) The role of the sympathetic nervous system in intestinal inflammation. Gut 55:1640–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun R, Urban JF, Notari L et al (2016) Interleukin-13 receptor α1-dependent responses in the intestine are critical to parasite clearance. Infect Immun 84:1032–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundin J, Rangel I, Kumawat AK et al (2014) Aberrant mucosal lymphocyte number and subsets in the colon of post-infectious irritable bowel syndrome patients. Scand J Gastroenterol 49:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Takahara M, Nemoto Y, Oshima S et al (2013) IL-7 promotes long-term in vitro survival of unique long-lived memory subset generated from mucosal effector memory CD4+ T cells in chronic colitis mice. Immunol Lett 156:82–93

    Article  CAS  PubMed  Google Scholar 

  • Thaiss CA, Zmora N, Levy M et al (2016) The microbiome and innate immunity. Nature 535:65–74

    Article  CAS  PubMed  Google Scholar 

  • Tournier J-N, Hellmann AQ (2003) Neuro-immune connections: evidence for a neuro-immunological synapse. Trends Immunol 24:114–115

    Google Scholar 

  • Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  CAS  PubMed  Google Scholar 

  • Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Investig 117:289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasina V, Abu-gharbieh E, Barbara G et al (2008) The β3-adrenoceptor agonist SR58611A ameliorates experimental colitis in rats. Neurogastroenterol Motil 20:1030–1041

    Article  CAS  PubMed  Google Scholar 

  • Verburg-van Kemenade BM, Cohen N, Chadzinska M (2017) Neuroendocrine-immune interaction: evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. Dev Comp Immunol 66:2–23

    Article  CAS  PubMed  Google Scholar 

  • Vergnolle N (2016) Protease inhibition as new therapeutic strategy for GI diseases. Gut 65:1215–1224

    Article  PubMed  PubMed Central  Google Scholar 

  • Vignali DAA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpe E, Servant N, Zollinger R et al (2008) A critical function for transforming growth factor-[beta], interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nat Immunol 9:650–657

    Article  CAS  PubMed  Google Scholar 

  • von Moltke J, Ji M, Liang H-E et al (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–225

    Article  CAS  Google Scholar 

  • Wang H, Yu M, Ochani M et al (2003) Nicotinic acetylcholine receptor [alpha]7 subunit is an essential regulator of inflammation. Nature 421:384–388

    Article  CAS  PubMed  Google Scholar 

  • Wang G-D, Wang X-Y, Liu S et al (2014) Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine. Am J Physiol Gastrointest Liver Physiol 307:G719–G731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yang WL, Jacob A et al (2015) Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats. PLoS One 10:e0118213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weaver CT, Hatton RD, Mangan PR et al (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm C, Harrison OJ, Schmitt V et al (2016) Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. J Exp Med 213:1409–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson SR, Thé L, Batia LM et al (2013) The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 155:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu R, Dong W, Qiang X et al (2009) Orexigenic hormone ghrelin ameliorates gut barrier dysfunction in sepsis in rats. Crit Care Med 37:2421–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yona S, Kim K-W, Wolf Y et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91

    Article  CAS  PubMed  Google Scholar 

  • Zhao A, McDermott J, Urban JF Jr et al (2003) Dependence of IL-4, IL-13, and nematode-induced alterations in murine small intestinal smooth muscle contractility on Stat6 and enteric nerves. J Immunol 171:948–954

    Article  CAS  PubMed  Google Scholar 

  • Zhao J-F, Ching L-C, Kou YR et al (2013) Activation of TRPV1 prevents OxLDL-induced lipid accumulation and TNF-α-induced inflammation in macrophages: role of liver X receptor α. Mediators Inflamm 2013:925171

    PubMed  PubMed Central  Google Scholar 

  • Zhao Z-Q, Liu X-Y, Jeffry J et al (2014) Descending control of itch transmission by the serotonergic system via 5-HT1A-facilitated GRP-GRPR signaling. Neuron 84:821–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zigmond E, Varol C, Farache J et al (2012) Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37:1076–1090

    Article  CAS  PubMed  Google Scholar 

  • Zorzi F, Monteleone I, Sarra M et al (2013) Distinct profiles of effector cytokines mark the different phases of Crohn’s disease. PLoS One 8:e54562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terez Shea-Donohue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Shea-Donohue, T., Urban, J.F. (2016). Neuroimmune Modulation of Gut Function. In: Greenwood-Van Meerveld, B. (eds) Gastrointestinal Pharmacology . Handbook of Experimental Pharmacology, vol 239. Springer, Cham. https://doi.org/10.1007/164_2016_109

Download citation

Publish with us

Policies and ethics