Skip to main content

cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors

  • Chapter
  • First Online:
Non-canonical Cyclic Nucleotides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 238))

Abstract

The cAMP-dependent protein kinase (PKA) and the cGMP-dependent protein kinase (PKG) are homologous enzymes with different binding and activation specificities for cyclic nucleotides. Both enzymes harbor conserved cyclic nucleotide-binding (CNB) domains. Differences in amino acid composition of these CNB domains mediate cyclic nucleotide selectivity in PKA and PKG, respectively. Recently, the presence of the noncanonical cyclic nucleotides cCMP and cUMP in eukaryotic cells has been proven, while the existence of cellular cIMP and cXMP remains unclear. It was shown that the main effectors of cyclic nucleotide signaling, PKA and PKG, can be activated by each of these noncanonical cyclic nucleotides. With unique effector proteins still missing, such cross-activation effects might have physiological relevance. Therefore, we approach PKA and PKG as cyclic nucleotide effectors in this chapter. The focus of this chapter is the general cyclic nucleotide-binding properties of both kinases as well as the selectivity for cAMP or cGMP, respectively. Furthermore, we discuss the binding affinities and activation potencies of noncanonical cyclic nucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal S, Rafikov R, Gross CM et al (2011) Purification and functional analysis of protein kinase G-1α using a bacterial expression system. Protein Expr Purif 79:271–276. doi:10.1016/j.pep.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  • Ashman DF, Lipton R, Melicow MM, Price TD (1963) Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem Biophys Res Commun 11:330–334

    Article  CAS  PubMed  Google Scholar 

  • Bähre H, Hartwig C, Munder A et al (2015) cCMP and cUMP occur in vivo. Biochem Biophys Res Commun 460:909–914. doi:10.1016/j.bbrc.2015.03.115

    Article  PubMed  PubMed Central  Google Scholar 

  • Beavo JA, Brunton LL (2002) Cyclic nucleotide research – still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718. doi:10.1038/nrm911

    Article  CAS  PubMed  Google Scholar 

  • Beavo JA, Hardman JG, Sutherland EW (1971) Stimulation of Adenosine 3′,5′-Monophosphate Hydrolysis by Guanosine 3′,5′-Monophosphate. J Biol Chem 246:3841–3846

    CAS  PubMed  Google Scholar 

  • Berman HM, Ten Eyck LF, Goodsell DS et al (2005) The cAMP binding domain: an ancient signaling module. Proc Natl Acad Sci U S A 102:45–50. doi:10.1073/pnas.0408579102

    Article  CAS  PubMed  Google Scholar 

  • Boras BW, Kornev A, Taylor SS, McCulloch AD (2014) Using Markov state models to develop a mechanistic understanding of protein kinase A regulatory subunit RIα activation in response to cAMP binding. J Biol Chem 289:30040–30051. doi:10.1074/jbc.M114.568907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruystens JGH, Wu J, Fortezzo A et al (2014) PKA RIα homodimer structure reveals an intermolecular interface with implications for cooperative cAMP binding and carney complex disease. Structure 22:59–69. doi:10.1016/j.str.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  • Bubis J, Neitzel JJ, Saraswat LD, Taylor SS (1988) A point mutation abolishes binding of cAMP to site A in the regulatory subunit of cAMP-dependent protein kinase. J Biol Chem 263:9668–9673

    CAS  PubMed  Google Scholar 

  • Burhenne H, Tappe K, Beste K et al (2011) Quantitation of cyclic nucleotides in mammalian cells and in human urine by high-performance liquid chromatography/mass spectrometry. BMC Pharmacol 11:P12. doi:10.1186/1471-2210-11-S1-P12

    Article  PubMed Central  Google Scholar 

  • Canaves JM, Taylor SS (2002) Classification and phylogenetic analysis of the cAMP-dependent protein kinase regulatory subunit family. J Mol Evol 54:17–29. doi:10.1007/s00239-001-0013-1

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zhang X, Ying L et al (2014) cIMP synthesized by sGC as a mediator of hypoxic contraction of coronary arteries. Am J Physiol Heart Circ Physiol 307:H328–H336. doi:10.1152/ajpheart.00132.2014

    Article  CAS  PubMed  Google Scholar 

  • Clegg CH, Cadd GG, McKnight GS (1988) Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 85:3703–3707. doi:10.1073/pnas.85.11.3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbin JD, Ogreid D, Miller JP et al (1986) Studies of cGMP analog specificity and function of the two intrasubunit binding sites of cGMP-dependent protein kinase. J Biol Chem 261:1208–1214

    CAS  PubMed  Google Scholar 

  • Corradini E, Burgers PP, Plank M et al (2015) Huntingtin-associated protein 1 (HAP1) is a cGMP-dependent kinase anchoring protein (GKAP) specific for the cGMP-dependent protein kinase Iβ isoform. J Biol Chem 290:7887–7896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto

    Google Scholar 

  • Desch M, Schinner E, Kees F et al (2010) Cyclic cytidine 3′,5′-monophosphate (cCMP) signals via cGMP kinase I. FEBS Lett 584:3979–3984. doi:10.1016/j.febslet.2010.07.059

    Article  CAS  PubMed  Google Scholar 

  • Diller TC, Xuong Madhusudan NH, Taylor SS (2001) Molecular basis for regulatory subunit diversity in cAMP-dependent protein kinase: crystal structure of the type II beta regulatory subunit. Structure 9:73–82

    Article  CAS  PubMed  Google Scholar 

  • Døskeland SO, Øgreid D, Ekanger R et al (1983) Mapping of the two intrachain cyclic nucleotide binding sites of adenosine cyclic 3′,5′-phosphate dependent protein kinase I. Biochemistry 22:1094–1101

    Article  PubMed  Google Scholar 

  • Feil R, Bigl M, Ruth P, Hofmann F (1993) Expression of cGMP-dependent protein kinase in Escherichia coli. Mol Cell Biochem 127–128:71–80

    Article  PubMed  Google Scholar 

  • Hahnefeld C, Moll D, Goette M, Herberg FW (2005) Rearrangements in a hydrophobic core region mediate cAMP action in the regulatory subunit of PKA. Biol Chem 386:623–631. doi:10.1515/BC.2005.073

    Article  CAS  PubMed  Google Scholar 

  • Hammerschmidt A, Chatterji B, Zeiser J et al (2012) Binding of regulatory subunits of cyclic AMP-dependent protein kinase to cyclic CMP agarose. PLoS One 7, e39848. doi:10.1371/journal.pone.0039848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwig C, Bähre H, Wolter S et al (2014) cAMP, cGMP, cCMP and cUMP concentrations across the tree of life: High cCMP and cUMP levels in astrocytes. Neurosci Lett 579:183–187. doi:10.1016/j.neulet.2014.07.019

    Article  CAS  PubMed  Google Scholar 

  • Herberg FW, Dostmann WR, Zorn M et al (1994) Crosstalk between domains in the regulatory subunit of cAMP-dependent protein kinase: influence of amino terminus on cAMP binding and holoenzyme formation. Biochemistry 33:7485–7494

    Article  CAS  PubMed  Google Scholar 

  • Herberg FW, Taylor SS, Dostmann WRG (1996) Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase. Biochemistry 35:2934–2942

    Article  CAS  PubMed  Google Scholar 

  • Hofmann F (2005) The biology of cyclic GMP-dependent protein kinases. J Biol Chem 280:1–4. doi:10.1074/jbc.R400035200

    Article  CAS  PubMed  Google Scholar 

  • Huang GY, Gerlits OO, Blakeley MP et al (2014a) Neutron diffraction reveals hydrogen bonds critical for cGMP-selective activation: insights for cGMP-dependent protein kinase agonist design. Biochemistry 53:6725–6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang GY, Kim JJ, Reger AS et al (2014b) Structural basis for cyclic-nucleotide selectivity and cGMP-selective activation of PKG I. Structure 22:116–124. doi:10.1016/j.str.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  • Ilouz R, Bubis J, Wu J et al (2012) Localization and quaternary structure of the PKA RIβ holoenzyme. Proc Natl Acad Sci U S A 109:12443–12448. doi:10.1073/pnas.1209538109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahnsen T, Hedin L, Kidd VJ et al (1986) Molecular cloning, cDNA structure, and regulation of the regulatory subunit of type II cAMP-dependent protein kinase from rat ovarian granulosa cells. J Biol Chem 261:12352–12361

    CAS  PubMed  Google Scholar 

  • Jiang H, Shabb JB, Corbin JD (1992) Cross-activation: overriding cAMP/cGMP selectivities of protein kinases in tissues. Biochem Cell Biol 70:1283–1289

    Article  CAS  PubMed  Google Scholar 

  • Kalderon D, Rubin G (1989) cGMP-dependent protein kinase genes in Drosophila. J Biol Chem 264:10738–10748

    CAS  PubMed  Google Scholar 

  • Kannan N, Wu J, Anand GS et al (2007) Evolution of allostery in the cyclic nucleotide binding module. Genome Biol 8:R264. doi:10.1186/gb-2007-8-12-r264

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824. doi:10.1152/physrev.00008.2002

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Xuong NH, Taylor SS (2005) Crystal structure of a complex between the catalytic and regulatory (RIalpha) subunits of PKA. Science 307:690–696. doi:10.1126/science.1104607

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Cheng CY, Saldanha SA, Taylor SS (2007) PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Cell 130:1032–1043. doi:10.1016/j.cell.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Casteel DE, Huang G et al (2011) Co-crystal structures of PKG Iβ (92-227) with cGMP and cAMP reveal the molecular details of cyclic-nucleotide binding. PLoS One 6, e18413. doi:10.1371/journal.pone.0018413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo JF, Greengard P (1970) Cyclic nucleotide-dependent protein kinases. VI. Isolation and partial purification of a protein kinase activated by guanosine 3′, 5′-monophosphate. J Biol Chem 245:2493–2498

    CAS  PubMed  Google Scholar 

  • Lee DC, Carmichael DF, Krebs EG, McKnight GS (1983) Isolation of a cDNA clone for the type I regulatory subunit of bovine cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 80:3608–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie CW (1982) Bovine lung cyclic GMP-dependent protein kinase exhibits two types of specific cyclic GMP-binding sites. J Biol Chem 257:5589–5593

    CAS  PubMed  Google Scholar 

  • McKay DB, Steitz TA (1981) Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature 290:744–749

    Article  CAS  PubMed  Google Scholar 

  • Mohanty S, Kennedy EJ, Herberg FW et al (2015) Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: implications for drug design. Biochim Biophys Acta 1854:1575–1585. doi:10.1016/j.bbapap.2015.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moll D, Prinz A, Gesellchen F et al (2006a) Biomolecular interaction analysis in functional proteomics. J Neural Transm 113:1015–1032. doi:10.1007/s00702-006-0515-5

    Article  CAS  PubMed  Google Scholar 

  • Moll D, Zimmermann B, Gesellchen F, Herberg FW (2006b) Current developments for the in vitro characterization of protein interactions. In: Hamacher M, Marcus K, Stühler K, van Hall A, Warscheid B, Meyer HE (eds) Proteomics in drug research. Wiley-VCH Verlag, New York, pp 159–172

    Chapter  Google Scholar 

  • Moll D, Schweinsberg S, Hammann C, Herberg FW (2007) Comparative thermodynamic analysis of cyclic nucleotide binding to protein kinase A. Biol Chem 388:163–172. doi:10.1515/BC.2007.018

    Article  CAS  PubMed  Google Scholar 

  • Øgreid D, Døskeland SO (1981a) Kinetics of the interaction between cyclic AMP and the regulatory moiety of protein kinase II. Evidence for interaction between the binding sites for cyclic AMP. FEBS Lett 129:282–286

    Article  PubMed  Google Scholar 

  • Øgreid D, Døskeland SO (1981b) The kinetics of association of cyclic AMP to the two types of binding sites associated with protein kinase II from bovine myocardium. FEBS Lett 129:287–292

    Article  PubMed  Google Scholar 

  • Øgreid D, Døskeland SO, Gorman KB, Steinberg RA (1988) Mutations that prevent cyclic nucleotide binding to binding sites A or B of type I cyclic AMP-dependent protein kinase. J Biol Chem 263:17397–17404

    PubMed  Google Scholar 

  • Osborne BW, Wu J, McFarland CJ et al (2011) Crystal structure of cGMP-dependent protein kinase reveals novel site of interchain communication. Structure 19:1317–1327. doi:10.1016/j.str.2011.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poppinga WJ, Muñoz-Llancao P, González-Billault C, Schmidt M (2014) A-kinase anchoring proteins: cyclic AMP compartmentalization in neurodegenerative and obstructive pulmonary diseases. Br J Pharmacol 171:5603–5623. doi:10.1111/bph.12882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 232:1065–1076

    CAS  PubMed  Google Scholar 

  • Rannels SR, Corbin JD (1980) Two different intrachain cAMP binding sites of cAMP-dependent protein kinases. J Biol Chem 255:7085–7088

    CAS  PubMed  Google Scholar 

  • Reed RB, Sandberg M, Jahnsen T et al (1996) Fast and slow cyclic nucleotide-dissociation sites in cAMP-dependent protein kinase are transposed in type Ibeta cGMP-dependent protein kinase. J Biol Chem 271:17570–17575

    Article  CAS  PubMed  Google Scholar 

  • Schweinsberg S, Moll D, Burghardt NCG et al (2008) Systematic interpretation of cyclic nucleotide binding studies using KinetXBase. Proteomics 8:1212–1220. doi:10.1002/pmic.200700731

    Article  CAS  PubMed  Google Scholar 

  • Scott JD, Glaccum MB, Zoller MJ et al (1987) The molecular cloning of a type II regulatory subunit of the cAMP-dependent protein kinase from rat skeletal muscle and mouse brain. Proc Natl Acad Sci U S A 84:5192–5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert R (2015) cCMP and cUMP: emerging second messengers. Trends Biochem Sci 40:8–15. doi:10.1016/j.tibs.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  • Seifert R, Schneider EH, Bähre H (2015) From canonical to non-canonical cyclic nucleotides as second messengers: Pharmacological implications. Pharmacol Ther 148:154–184. doi:10.1016/j.pharmthera.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  • Shabb JB (2001) Physiological substrates of cAMP-dependent protein kinase. Chem Rev 101:2381–2411

    Article  CAS  PubMed  Google Scholar 

  • Shabb JB, Ng L, Corbin JD (1990) One amino acid change produces a high affinity cGMP-binding site in cAMP-dependent protein kinase. J Biol Chem 265:16031–16034

    CAS  PubMed  Google Scholar 

  • Shabb JB, Buzzeo BD, Ng L, Corbin JD (1991) Mutating protein kinase cAMP-binding sites into cGMP-binding sites. J Biol Chem 266:24320–24326

    CAS  PubMed  Google Scholar 

  • Shabb JB, Poteet CE, Kapphahn MA et al (1995) Characterization of the isolated cAMP-binding B domain of cAMP-dependent protein kinase. Protein Sci 4:2100–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuntoh H, Steinberg RA (1991) Analysis of the dominance of mutations in cAMP-binding sites of murine type I cAMP-dependent protein kinase in activation of kinase from heterozygous mutant lymphoma cells. J Cell Physiol 146:86–93. doi:10.1002/jcp.1041460112

    Article  CAS  PubMed  Google Scholar 

  • Steinberg RA, Gorman KB, Øgreid D et al (1991) Mutations that alter the charge of type I regulatory subunit and modify activation properties of cyclic AMP-dependent protein kinase from S49 mouse lymphoma cells. J Biol Chem 266:3547–3553

    CAS  PubMed  Google Scholar 

  • Su Y, Dostmann WR, Herberg FW et al (1995) Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science 269:807–813

    Article  CAS  PubMed  Google Scholar 

  • Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1091

    CAS  PubMed  Google Scholar 

  • Sutherland EW, Rall TW (1960) The relation of adenosine-3′, 5′-phosphate and phosphorylase to the actions of catecholamines and other hormones. Pharmacol Rev 12:265–299

    CAS  Google Scholar 

  • Taylor SS, Yang J, Wu J et al (2004) PKA: a portrait of protein kinase dynamics. Biochim Biophys Acta 1697:259–269. doi:10.1016/j.bbapap.2003.11.029

    Article  CAS  PubMed  Google Scholar 

  • Taylor SS, Zhang P, Steichen JM et al (2013) PKA: lessons learned after twenty years. Biochim Biophys Acta 1834:1271–1278. doi:10.1016/j.bbapap.2013.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uhler MD (1993) Cloning and expression of a novel cyclic GMP-dependent protein kinase from mouse brain. J Biol Chem 268:13586–13591

    CAS  PubMed  Google Scholar 

  • Von Bülow V, Dubben S, Engelhardt G et al (2007) Zinc-dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B. J Immunol 179:4180–4186. doi:10.4049/jimmunol.179.6.4180

    Article  Google Scholar 

  • Walsh DA, Perkins JP, Krebs EG (1968) An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem 243:3763–3765

    CAS  PubMed  Google Scholar 

  • Weber IT, Steitz TA, Bubis J, Taylor SS (1987) Predicted structures of cAMP binding domains of type I and II regulatory subunits of cAMP-dependent protein kinase. Biochemistry 26:343–351. doi:10.1021/bi00376a003

    Article  CAS  PubMed  Google Scholar 

  • Weber IT, Shabb JB, Corbin JD (1989) Predicted structures of the cGMP binding domains of the cGMP-dependent protein kinase: a key alanine/threonine difference in evolutionary divergence of cAMP and cGMP binding sites. Biochemistry 28:6122–6127

    Article  CAS  PubMed  Google Scholar 

  • Wernet W, Flockerzi V, Hofmann F (1989) The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett 251:191–196. doi:10.1016/0014-5793(89)81453-X

    Article  CAS  PubMed  Google Scholar 

  • Wolfertstetter S, Reinders J, Schwede F et al (2015) Interaction of cCMP with the cGK, cAK and MAPK kinases in murine tissues. Plos One 10, e0126057. doi:10.1371/journal.pone.0126057

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolter S, Golombek M, Seifert R (2011) Differential activation of cAMP- and cGMP-dependent protein kinases by cyclic purine and pyrimidine nucleotides. Biochem Biophys Res Commun 415:563–566. doi:10.1016/j.bbrc.2011.10.093

    Article  CAS  PubMed  Google Scholar 

  • Wolter S, Dove S, Golombek M et al (2014) N(4)-monobutyryl-cCMP activates PKA RIα and PKA RIIα more potently and with higher efficacy than PKG Iα in vitro but not in vivo. Naunyn Schmiedebergs Arch Pharmacol 387:1163–1175. doi:10.1007/s00210-014-1042-9

    Article  CAS  PubMed  Google Scholar 

  • Wolter S, Kloth C, Golombek M et al (2015) cCMP causes caspase-dependent apoptosis in mouse lymphoma cell lines. Biochem Pharmacol 98:119–131

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Brown S, Xuong NH, Taylor SS (2004) RIalpha subunit of PKA: a cAMP-free structure reveals a hydrophobic capping mechanism for docking cAMP into site B. Structure 12:1057–1065. doi:10.1016/j.str.2004.03.022

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Brown SHJ, von Daake S, Taylor SS (2007) PKA type IIalpha holoenzyme reveals a combinatorial strategy for isoform diversity. Science 318:274–279. doi:10.1126/science.1146447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Smith-Nguyen EV, Keshwani MM et al (2012) Structure and allostery of the PKA RIIβ tetrameric holoenzyme. Science 335:712–716. doi:10.1126/science.1213979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich W. Herberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lorenz, R., Bertinetti, D., Herberg, F.W. (2015). cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors. In: Seifert, R. (eds) Non-canonical Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 238. Springer, Cham. https://doi.org/10.1007/164_2015_36

Download citation

Publish with us

Policies and ethics