Skip to main content

Abstract

Neurons at sensory ganglia are widely known for their ability to transmit external or internal information toward the brain. A subpopulation of these neurons constitutively synthesizes the neuropeptide substance P (SP) and calcitonin gene-related peptide (CGRP). These peptides are related to pain transmission in the spinal cord, but in periphery, these peptides have a wide spectrum of biological effects. Noceffector is the term adopted to designate those peptidergic neurons at sensory ganglia which participate in maintaining tissue homeostasis. Here, we describe the role of noceffector on epithelial homeostasis both in noninjury conditions and during wound healing. Remarkably, peptidergic terminals seem to be an active participant of stem cell physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holford LC, Case P, Lawson SN (1994) Substance P, neurofilament, peripherin and SSEA4 immunocytochemistry of human dorsal root ganglion neurons obtained from post-mortem tissue: a quantitative morphometric analysis. J Neurocytol 23(9):577–589

    Article  CAS  PubMed  Google Scholar 

  2. Lawson SN, Crepps BA, Perl ER (1997) Relationship of substance P to afferent characteristics of dorsal root ganglion neurons in guinea-pig. J Physiol Lond 505(1):177–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McCarthy PW, Lawson SN (1989) Cell type and conduction velocity of rat primary sensory neurons with substance P-like immunoreactivity. Neuroscience 28(3):745–753

    Article  CAS  PubMed  Google Scholar 

  4. Gibson SJ, Polak JM, Bloom SR, Sabate IM, Mulderry PM, Ghatei MA, McGregor GP, Morrison JF, Kelly JS, Evans RM (1984) Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J Neurosci 4(12):3101–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fundin BT, Rice FL, Ernfors P (2002) Patterned gene programs and target remodeling following axotomy at a major site for sensory innervation. J Neurobiol 53(3):370–380

    Article  CAS  PubMed  Google Scholar 

  6. Meyer MH, Etienne W, Meyer RA Jr (2004) Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: a randomized, controlled, microarray study. BMC Musculoskelet Disord 5(1):24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hosoi J, Murphy GF, Egan CL, Lerner EA, Grabbe S, Asahina A, Granstein RD (1993) Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature 363(6425):159–163

    Article  CAS  PubMed  Google Scholar 

  8. Hara M, Toyoda M, Yaar M, Bhawan J, Avila EM, Penner IR, Gilchrest BA (1996) Innervation of melanocytes in human skin. J Exp Med 184(4):1385–1395

    Article  CAS  PubMed  Google Scholar 

  9. Egan CL, Viglione-Schneck MJ, Walsh LJ, Green B, Trojanowski JQ, Whitaker-Menezes D, Murphy GF (1998) Characterization of unmyelinated axons uniting epidermal and dermal immune cells in primate and murine skin. J Cutan Pathol 25(1):20–29

    Article  CAS  PubMed  Google Scholar 

  10. Hukkanen M, Konttinen YT, Rees RG, Gibson SJ, Santavirta S, Polak JM (1992) Innervation of bone from healthy and arthritic rats by substance P and calcitonin gene related peptide containing sensory fibers. J Rheumatol 19(8):1252–1259

    CAS  PubMed  Google Scholar 

  11. Kruger L (1996) The functional morphology of thin sensory axons: some principles and problems. Prog Brain Res 113:255–272

    Article  CAS  PubMed  Google Scholar 

  12. Lawson SN (1979) The postnatal development of large light and small dark neurons in mouse dorsal root ganglia: a statistical analysis of cell numbers and size. J Neurocytol 8(3):275–294

    Article  CAS  PubMed  Google Scholar 

  13. Lawson SN, Caddy KW, Biscoe TJ (1974) Development of rat dorsal root ganglion neurons. Studies of cell birthdays and changes in mean cell diameter. Cell Tissue Res 153(3):399–413

    Article  CAS  PubMed  Google Scholar 

  14. Lawson SN, Harper AA, Harper EI, Garson JA, Anderton BH (1984) A monoclonal antibody against neurofilament protein specifically labels a subpopulation of rat sensory neurons. J Comp Neurol 228(2):263–272

    Article  CAS  PubMed  Google Scholar 

  15. Lawson SN (1992) Morphological and biochemical cell types of sensory neurons. In: Scott SA (ed) Sensory neurons: diversity, development, and plasticity. Oxford University Press, New York, pp 27–59

    Google Scholar 

  16. Goldstein ME, House SB, Gainer H (1991) NF-L and peripherin immunoreactivities define distinct classes of rat sensory ganglion cells. J Neurosci Res 30(1):92–104

    Article  CAS  PubMed  Google Scholar 

  17. Harper AA, Lawson SN (1985) Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurons. J Physiol 359:31–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 435:41–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang X, Djouhri L, McMullan S, Berry C, Okuse K, Waxman SG, Lawson SN (2005) trkA is expressed in nociceptive neurons and influences electrophysiological properties via Nav1.8 expression in rapidly conducting nociceptors. J Neurosci 25(19):4868–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perl ER (1992) Function of dorsal root ganglion neurons: an overview. In: Scott SA (ed) Sensory neurons: diversity, development, and plasticity. Oxford University Press, New York, pp 3–23

    Google Scholar 

  21. Lee KH, Chung K, Chung JM, Coggeshall RE (1986) Correlation of cell body size, axon size, and signal conduction velocity for individually labelled dorsal root ganglion cells in the cat. J Comp Neurol 243(3):335–346

    Article  CAS  PubMed  Google Scholar 

  22. Albrecht PJ, Hines S, Eisenberg E, Pud D, Finlay DR, Connolly MK, Pare M, Davar G, Rice FL (2006) Pathologic alterations of cutaneous innervation and vasculature in affected limbs from patients with complex regional pain syndrome. Pain 120(3):244–266

    Article  PubMed  Google Scholar 

  23. Dux M, Sann H, Schemann M, Jancsó G (1999) Changes in fibre populations of the rat hairy skin following selective chemodenervation by capsaicin. Cell Tissue Res 296(3):471–477

    Article  CAS  PubMed  Google Scholar 

  24. Boilly B, Faulkner S, Jobling P, Hondermarck H (2017) Nerve dependence: from regeneration to cancer. Cancer Cell 31(3):342–354

    Article  CAS  PubMed  Google Scholar 

  25. Lawson SN, Crepps B, Perl ER (2002) Calcitonin gene-related peptide immunoreactivity and afferent receptive properties of dorsal root ganglion neurons in guinea-pigs. J Physiol Lond 540(3):989–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fang X, McMullan S, Lawson SN, Djouhri L (2005) Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurons in the rat in vivo. J Physiol Lond 565(3):927–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Djouhri L, Bleazard L, Lawson SN (1998) Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurons. J Physiol Lond 513(3):857–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldstein ME, Grant P, House SB, Henken DB, Gainer H (1996) Developmental regulation of two distinct neuronal phenotypes in rat dorsal root ganglia. Neuroscience 71(1):243–258

    Article  CAS  PubMed  Google Scholar 

  29. Hall AK, Ai X, Hickman GE, MacPhedran SE, Nduaguba CO, Robertson CP (1997) The generation of neuronal heterogeneity in a rat sensory ganglion. J Neurosci 17(8):2775–2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Brien C, Woolf CJ, Fitzgerald M, Lindsay RM, Molander C (1989) Differences in the chemical expression of rat primary afferent neurons which innervate skin, muscle or joint. Neuroscience 32(2):493–502

    Article  PubMed  Google Scholar 

  31. Holzer P, Maggi CA (1998) Dissociation of dorsal root ganglion neurons into afferent and efferent-like neurons. Neuroscience 86(2):389–398

    Article  CAS  PubMed  Google Scholar 

  32. Zylka MJ, Rice FL, Anderson DJ (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45(1):17–25

    Article  CAS  PubMed  Google Scholar 

  33. Braz JM, Nassar MA, Wood JN, Basbaum AI (2005) Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 47(6):787–793

    Article  CAS  PubMed  Google Scholar 

  34. Yang Y, Ozawa H, Lu H, Yuri K, Hayashi S, Nihonyanagi K, Kawata M (1998) Immunocytochemical analysis of sex differences in calcitonin gene-related peptide in the rat dorsal root ganglion, with special reference to estrogen and its receptor. Brain Res 791(1–2):35–42

    Article  CAS  PubMed  Google Scholar 

  35. McCarthy PW, Lawson SN (1990) Cell type and conduction velocity of rat primary sensory neurons with calcitonin gene-related peptide-like immunoreactivity. Neuroscience 34(3):623–632

    Article  CAS  PubMed  Google Scholar 

  36. Wimalawansa SJ (1997) Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit Rev Neurobiol 11(2–3):167–239

    Article  CAS  PubMed  Google Scholar 

  37. Russell FA, King R, Smillie SJ, Kodji X, Brain SD (2014) Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 94(4):1099–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amara SG, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG (1985) Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 229(4718):1094–1097

    Article  CAS  PubMed  Google Scholar 

  39. Steenbergh PH, Hoppener JW, Zandberg J, Lips CJ, Jansz HS (1985) A second human calcitonin/CGRP gene. FEBS Lett 183(2):403–407

    Article  CAS  PubMed  Google Scholar 

  40. Gkonos PJ, Born W, Jones BN, Petermann JB, Keutmann HT, Birnbaum RS, Fischer JA, Roos BA (1986) Biosynthesis of calcitonin gene-related peptide and calcitonin by a human medullary thyroid carcinoma cell line. J Biol Chem 261(31):14386–14391

    CAS  PubMed  Google Scholar 

  41. Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17(5):533–585

    Article  CAS  PubMed  Google Scholar 

  42. McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393(6683):333–339

    Article  CAS  PubMed  Google Scholar 

  43. Kim YG, Lone AM, Nolte WM, Saghatelian A (2012) Peptidomics approach to elucidate the proteolytic regulation of bioactive peptides. Proc Natl Acad Sci U S A 109(22):8523–8527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hartopo AB, Emoto N, Vignon-Zellweger N, Suzuki Y, Yagi K, Nakayama K, Hirata K (2013) Endothelin-converting enzyme-1 gene ablation attenuates pulmonary fibrosis via CGRP-cAMP/EPAC1 pathway. Am J Respir Cell Mol Biol 48(4):465–476

    Article  CAS  PubMed  Google Scholar 

  45. Marchand JE, Zaccheo TS, Connelly CS, Kream RM (1993) Selective in situ hybridization histochemical analyses of alternatively spliced mRNAs encoding beta- and gamma-preprotachykinins in rat central nervous system. Brain Res Mol Brain Res 17(1–2):83–94

    Article  CAS  PubMed  Google Scholar 

  46. Harmar AJ, Hyde V, Chapman K (1990) Identification and cDNA sequence of delta-preprotachykinin, a fourth splicing variant of the rat substance P precursor. FEBS Lett 275(1–2):22–24

    Article  CAS  PubMed  Google Scholar 

  47. Carter MS, Krause JE (1990) Structure, expression, and some regulatory mechanisms of the rat preprotachykinin gene encoding substance P, neurokinin A, neuropeptide K, and neuropeptide gamma. J Neurosci 10(7):2203–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krause JE, Chirgwin JM, Carter MS, Xu ZS, Hershey AD (1987) Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc Natl Acad Sci 84(3):881–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Page NM (2005) New challenges in the study of the mammalian tachykinins. Peptides 26(8):1356–1368

    Article  CAS  PubMed  Google Scholar 

  50. Carraway R, Leeman SE (1979) The amino acid sequence of bovine hypothalamic substance P. Identity to substance P from colliculi and small intestine. J Biol Chem 254(8):2944–2945

    CAS  PubMed  Google Scholar 

  51. Chang MM, Leeman SE (1970) Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P. J Biol Chem 245(18):4784–4790

    CAS  PubMed  Google Scholar 

  52. Cascieri MA, Huang RR, Fong TM, Cheung AH, Sadowski S, Ber E, Strader CD (1992) Determination of the amino acid residues in substance P conferring selectivity and specificity for the rat neurokinin receptors. Mol Pharmacol 41(6):1096–1099

    CAS  PubMed  Google Scholar 

  53. Yokota Y, Sasai Y, Tanaka K, Fujiwara T, Tsuchida K, Shigemoto R, Kakizuka A, Ohkubo H, Nakanishi S (1989) Molecular characterization of a functional cDNA for rat substance P receptor. J Biol Chem 264(30):17649–17652

    CAS  PubMed  Google Scholar 

  54. Amadesi S, Moreau J, Tognetto M, Springer J, Trevisani M, Naline E, Advenier C, Fisher A, Vinci D, Mapp C, Miotto D, Cavallesco G, Geppetti P (2001) NK1 receptor stimulation causes contraction and inositol phosphate increase in medium-size human isolated bronchi. Am J Respir Crit Care Med 163(5):1206–1211

    Article  CAS  PubMed  Google Scholar 

  55. Lin YR, Kao PC, Chan MH (2005) Involvement of Ca2+ signaling in tachykinin-mediated contractile responses in swine trachea. J Biomed Sci 12(3):547–558

    Article  CAS  PubMed  Google Scholar 

  56. Okamoto A, Lovett M, Payan DG, Bunnett NW (1994) Interactions between neutral endopeptidase (EC 3.4.24.11) and the substance P (NK1) receptor expressed in mammalian cells. Biochem J 299(Pt 3):683–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Article  CAS  PubMed  Google Scholar 

  58. Bayliss WM (1901) On the origin of the vasodilator fibres of the hind limb, and on the nature of these fibers. J Physiol 26:173–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn Schmiedeberg’s Arch Pharmacol 310(2):175–183

    Article  CAS  Google Scholar 

  60. Escott KJ, Brain SD (1993) Effect of a calcitonin gene-related peptide antagonist (CGRP8-37) on skin vasodilatation and oedema induced by stimulation of the rat saphenous nerve. Br J Pharmacol 110(2):772–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313(5997):54–56

    Article  CAS  PubMed  Google Scholar 

  62. Brain SD, Newbold P, Kajekar R (1995) Modulation of the release and activity of neuropeptides in the microcirculation. Can J Physiol Pharmacol 73(7):995–998

    Article  CAS  PubMed  Google Scholar 

  63. Wang H, Woolf CJ (2005) Pain TRPs. Neuron 46(1):9–12

    Article  CAS  PubMed  Google Scholar 

  64. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    Article  CAS  PubMed  Google Scholar 

  65. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543

    Article  CAS  PubMed  Google Scholar 

  66. De Camilli P, Jahn R (1990) Pathways to regulated exocytosis in neurons. Annu Rev Physiol 52:625–645

    Article  PubMed  Google Scholar 

  67. Sauer SK, Bove GM, Averbeck B, Reeh PW (1999) Rat peripheral nerve components release calcitonin gene-related peptide and prostaglandin E2 in response to noxious stimuli: evidence that nervi nervorum are nociceptors. Neuroscience 92(1):319–325

    Article  CAS  PubMed  Google Scholar 

  68. Kilo S, Harding-Rose C, Hargreaves KM, Flores CM (1997) Peripheral CGRP release as a marker for neurogenic inflammation: a model system for the study of neuropeptide secretion in rat paw skin. Pain 73(2):201–207

    Article  CAS  PubMed  Google Scholar 

  69. Flores CM, Leong AS, Dussor GO, Hargreaves KM, Kilo S (2001) Capsaicin-evoked CGRP release from rat buccal mucosa: development of a model system for studying trigeminal mechanisms of neurogenic inflammation. Eur J Neurosci 14(7):1113–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fischer MJ, Reeh PW, Sauer SK (2003) Proton-induced calcitonin gene-related peptide release from rat sciatic nerve axons, in vitro, involving TRPV1. Eur J Neurosci 18(4):803–810

    Article  PubMed  Google Scholar 

  71. Petho G, Izydorczyk I, Reeh PW (2004) Effects of TRPV1 receptor antagonists on stimulated iCGRP release from isolated skin of rats and TRPV1 mutant mice. Pain 109(3):284–290

    Article  CAS  PubMed  Google Scholar 

  72. Kessler F, Habelt C, Averbeck B, Reeh PW, Kress M (1999) Heat-induced release of CGRP from isolated rat skin and effects of bradykinin and the protein kinase C activator PMA. Pain 83(2):289–295

    Article  CAS  PubMed  Google Scholar 

  73. Sauer SK, Reeh PW, Bove GM (2001) Noxious heat-induced CGRP release from rat sciatic nerve axons in vitro. Eur J Neurosci 14(8):1203–1208

    Article  CAS  PubMed  Google Scholar 

  74. Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X(3) purinoceptor and IB4 binding sites. Eur J Neurosci 11(3):946–958

    Article  CAS  PubMed  Google Scholar 

  75. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin JP, Ooi L, Egerton J, Charles KJ, Smart D, Randall AD, Anand P, Davis JB (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418(6894):186–190

    Article  CAS  PubMed  Google Scholar 

  76. Kedei N, Szabo T, Lile JD, Treanor JJ, Olah Z, Iadarola MJ, Blumberg PM (2001) Analysis of the native quaternary structure of vanilloid receptor 1. J Biol Chem 276(30):28613–28619

    Article  CAS  PubMed  Google Scholar 

  77. Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, Groschner K (2000) Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+−sensitive cation channels. J Biol Chem 275(36):27799–27805

    CAS  PubMed  Google Scholar 

  78. Kichko TI, Reeh PW (2004) Why cooling is beneficial: non-linear temperature-dependency of stimulated iCGRP release from isolated rat skin. Pain 110(1–2):215–219

    Article  CAS  PubMed  Google Scholar 

  79. Franco-Cereceda A, Saria A, Lundberg JM (1989) Differential release of calcitonin gene-related peptide and neuropeptide Y from the isolated heart by capsaicin, ischaemia, nicotine, bradykinin and ouabain. Acta Physiol Scand 135(2):173–187

    Article  CAS  PubMed  Google Scholar 

  80. Hua XY, Yaksh TL (1993) Pharmacology of the effects of bradykinin, serotonin, and histamine on the release of calcitonin gene-related peptide from C-fiber terminals in the rat trachea. J Neurosci 13(5):1947–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Averbeck B, Reeh PW (2001) Interactions of inflammatory mediators stimulating release of calcitonin gene-related peptide, substance P and prostaglandin E2 from isolated rat skin. Neuropharmacology 40(3):416–423

    Article  CAS  PubMed  Google Scholar 

  82. Opree A, Kress M (2000) Involvement of the proinflammatory cytokines tumor necrosis Factor-alpha, IL-1beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J Neurosci 20(16):6289–6293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kress M, Guthmann C, Averbeck B, Reeh PW (1999) Calcitonin gene-related peptide and prostaglandin E2 but not substance P release induced by antidromic nerve stimulation from rat skin in vitro. Neuroscience 89(1):303–310

    Article  CAS  PubMed  Google Scholar 

  84. Cesare P, McNaughton P (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. PNAS 93(26):15435–15439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nemeth J, Helyes Z, Oroszi G, Than M, Pinter E, Szolcsanyi J (1998) Inhibition of nociceptin on sensory neuropeptide release and mast cell-mediated plasma extravasation in rats. Eur J Pharmacol 347(1):101–104

    Article  CAS  PubMed  Google Scholar 

  86. Faisy C, Naline E, Rouget CL, Risse PA, Guerot E, Fagon JY, Chinet T, Roche N, Advenier C (2004) Nociceptin inhibits vanilloid TRPV-1-mediated neurosensitization induced by fenoterol in human isolated bronchi. Naunyn Schmiedeberg’s Arch Pharmacol 370(3):167–175

    Article  CAS  Google Scholar 

  87. Corboz MR, Rivelli MA, Egan RW, Tulshian D, Matasi J, Fawzi AB, Benbow L, Smith-Torhan A, Zhang H, Hey JA (2000) Nociceptin inhibits capsaicin-induced bronchoconstriction in isolated guinea pig lung. Eur J Pharmacol 402(1–2):171–179

    Article  CAS  PubMed  Google Scholar 

  88. Giuliani S, Maggi CA (1997) Prejunctional modulation by nociceptin of nerve-mediated inotropic responses in guinea-pig left atrium. Eur J Pharmacol 332(3):231–236

    Article  CAS  PubMed  Google Scholar 

  89. Helyes Z, Nemeth J, Pinter E, Szolcsanyi J (1997) Inhibition by nociceptin of neurogenic inflammation and the release of SP and CGRP from sensory nerve terminals. Br J Pharmacol 121(4):613–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bartho L, Ernst R, Pierau FK, Sann H, Faulstroh K, Petho G (1992) An opioid peptide inhibits capsaicin-sensitive vasodilatation in the pig’s skin. Neuropeptides 23(4):227–237

    Article  CAS  PubMed  Google Scholar 

  91. Ray NJ, Jones AJ, Keen P (1991) Morphine, but not sodium cromoglycate, modulates the release of substance P from capsaicin-sensitive neurons in the rat trachea in vitro. Br J Pharmacol 102(4):797–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yaksh TL (1988) Substance P release from knee joint afferent terminals: modulation by opioids. Brain Res 458(2):319–324

    Article  CAS  PubMed  Google Scholar 

  93. Yonehara N, Imai Y, Chen JQ, Takiuchi S, Inoki R (1992) Influence of opioids on substance P release evoked by antidromic stimulation of primary afferent fibers in the hind instep of rats. Regul Pept 38(1):13–22

    Article  CAS  PubMed  Google Scholar 

  94. Khalil Z, Townley SL, Grimbaldeston MA, Finlay-Jones JJ, Hart PH (2001) Cis-Urocanic acid stimulates neuropeptide release from peripheral sensory nerves. J Invest Dermatol 117(4):886–891

    Article  CAS  PubMed  Google Scholar 

  95. Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400(6743):452–457

    Article  CAS  PubMed  Google Scholar 

  96. Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davis JB (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129(2):227–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Willis WD (1999) Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 124(4):395–421

    Article  CAS  PubMed  Google Scholar 

  98. Lin Q, Wu J, Willis WD (1999) Dorsal root reflexes and cutaneous neurogenic inflammation after intradermal injection of capsaicin in rats. J Neurophysiol 82(5):2602–2611

    Article  CAS  PubMed  Google Scholar 

  99. Peng YB, Wu J, Willis WD, Kenshalo DR (2001) GABAA and 5-HT3 receptors are involved in dorsal root reflexes: possible role in periaqueductal gray descending inhibition. J Neurophysiol 86(1):49–58

    Article  CAS  PubMed  Google Scholar 

  100. Silverman JD, Kruger L (1987) An interpretation of dental innervation based upon the pattern of calcitonin gene-related peptide (CGRP)-immunoreactive thin sensory axons. Somatosens Res 5(2):157–175

    Article  CAS  PubMed  Google Scholar 

  101. Fundin BT, Arvidsson J, Aldskogius H, Johansson O, Rice SN, Rice FL (1997) Comprehensive immunofluorescence and lectin binding analysis of intervibrissal fur innervation in the mystacial pad of the rat. J Comp Neurol 385(2):185–206

    Article  CAS  PubMed  Google Scholar 

  102. Rice FL, Fundin BT, Arvidsson J, Aldskogius H, Johansson O (1997) Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J Comp Neurol 385(2):149–184

    Article  CAS  PubMed  Google Scholar 

  103. Fundin BT, Pfaller K, Rice FL (1997) Different distributions of the sensory and autonomic innervation among the microvasculature of the rat mystacial pad. J Comp Neurol 389(4):545–568

    Article  CAS  PubMed  Google Scholar 

  104. Ruocco I, Cuello AC, Shigemoto R, Ribeiro-da-Silva A (2001) Light and electron microscopic study of the distribution of substance P-immunoreactive fibers and neurokinin-1 receptors in the skin of the rat lower lip. J Comp Neurol 432(4):466–480

    Article  CAS  PubMed  Google Scholar 

  105. Burbach GJ, Kim KH, Zivony AS, Kim A, Aranda J, Wright S, Naik SM, Caughman SW, Ansel JC, Armstrong CA (2001) The neurosensory tachykinins substance P and neurokinin A directly induce keratinocyte nerve growth factor. J Invest Dermatol 117(5):1075–1082

    Article  CAS  PubMed  Google Scholar 

  106. Thompson PD, Thomas PK (2005) Clinical patterns of peripheral neuropathy. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, pp 1137–1161

    Chapter  Google Scholar 

  107. Paus R (2016) Exploring the “brain-skin connection”: leads and lessons from the hair follicle. Curr Res Transl Med 64(4):207–214

    Article  CAS  PubMed  Google Scholar 

  108. Hsieh ST, Choi S, Lin WM, Chang YC, McArthur JC, Griffin JW (1996) Epidermal denervation and its effects on keratinocytes and Langerhans cells. J Neurocytol 25(9):513–524

    Article  CAS  PubMed  Google Scholar 

  109. Stankovic N, Johansson O, Oqvist G, Hildebrand C (1999) Indirect effect of sciatic nerve injury on the epidermal thickness of plantar glabrous skin in rats. Scand J Plast Reconstr Surg Hand Surg 33(3):273–279

    Article  CAS  PubMed  Google Scholar 

  110. Hsieh ST, Lin WM (1999) Modulation of keratinocyte proliferation by skin innervation. J Invest Dermatol 113(4):579–586

    Article  CAS  PubMed  Google Scholar 

  111. Huang IT, Lin WM, Shun CT, Hsieh ST (1999) Influence of cutaneous nerves on keratinocyte proliferation and epidermal thickness in mice. Neuroscience 94(3):965–973

    Article  CAS  PubMed  Google Scholar 

  112. Burgess PR, English KB, Horch KW, Stensaas LJ (1974) Patterning in the regeneration of type I cutaneous receptors. J Physiol 236(1):57–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nurse CA, Macintyre L, Diamond J (1984) A quantitative study of the time course of the reduction in Merkel cell number within denervated rat touch domes. Neuroscience 11(2):521–533

    Article  CAS  PubMed  Google Scholar 

  114. Tanaka T, Danno K, Ikai K, Imamura S (1988) Effects of substance P and substance K on the growth of cultured keratinocytes. J Invest Dermatol 90(3):399–401

    Article  CAS  PubMed  Google Scholar 

  115. Kahler CM, Herold M, Reinisch N, Wiedermann CJ (1996) Interaction of substance P with epidermal growth factor and fibroblast growth factor in cyclooxygenase-dependent proliferation of human skin fibroblasts. J Cell Physiol 166(3):601–608

    Article  CAS  PubMed  Google Scholar 

  116. Peters EM, Botchkarev VA, Muller-Rover S, Moll I, Rice FL, Paus R (2002) Developmental timing of hair follicle and dorsal skin innervation in mice. J Comp Neurol 448(1):28–52

    Article  PubMed  Google Scholar 

  117. Botchkarev VA, Eichmuller S, Johansson O, Paus R (1997) Hair cycle-dependent plasticity of skin and hair follicle innervation in normal murine skin. J Comp Neurol 386(3):379–395

    Article  CAS  PubMed  Google Scholar 

  118. Peters EM, Botchkarev VA, Botchkareva NV, Tobin DJ, Paus R (2001) Hair-cycle-associated remodeling of the peptidergic innervation of murine skin, and hair growth modulation by neuropeptides. J Invest Dermatol 116(2):236–245

    Article  CAS  PubMed  Google Scholar 

  119. Paus R, Heinzelmann T, Schultz KD, Furkert J, Fechner K, Czarnetzki BM (1994) Hair growth induction by substance P. Lab Investig 71(1):134–140

    CAS  PubMed  Google Scholar 

  120. Maurer M, Fischer E, Handjiski B, von Stebut E, Algermissen B, Bavandi A, Paus R (1997) Activated skin mast cells are involved in murine hair follicle regression (catagen). Lab Investig 77(4):319–332

    CAS  PubMed  Google Scholar 

  121. Chan J, Smoller BR, Raychauduri SP, Jiang WY, Farber EM (1997) Intraepidermal nerve fiber expression of calcitonin gene-related peptide, vasoactive intestinal peptide and substance P in psoriasis. Arch Dermatol Res 289(11):611–616

    Article  CAS  PubMed  Google Scholar 

  122. Lazarova R, Hristakieva E, Lazarov N, Shani J (2000) Vitiligo-related neuropeptides in nerve fibers of the skin. Arch Physiol Biochem 108(3):262–267

    CAS  PubMed  Google Scholar 

  123. Urashima R, Mihara M (1998) Cutaneous nerves in atopic dermatitis. Virchows Arch 432(4):363–370

    Article  CAS  PubMed  Google Scholar 

  124. Naukkarinen A, Jarvikallio A, Lakkakorpi J, Harvima IT, Harvima RJ, Horsmanheimo M (1996) Quantitative histochemical analysis of mast cells and sensory nerves in psoriatic skin. J Pathol 180(2):200–205

    Article  CAS  PubMed  Google Scholar 

  125. Jarvikallio A, Harvima IT, Naukkarinen A (2003) Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch Dermatol Res 295(1):2–7

    Article  PubMed  Google Scholar 

  126. Zenz R, Eferl R, Kenner L, Florin L, Hummerich L, Mehic D, Scheuch H, Angel P, Tschachler E, Wagner EF (2005) Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437(7057):369–375

    Article  CAS  PubMed  Google Scholar 

  127. Raychaudhuri SP, Jiang WY, Farber EM (1998) Psoriatic keratinocytes express high levels of nerve growth factor. Acta Derm Venereol 78(2):84–86

    Article  CAS  PubMed  Google Scholar 

  128. Martinez-Martinez E, Galvan-Hernandez CI, Toscano-Marquez B, Gutierrez-Ospina G (2012) Modulatory role of sensory innervation on hair follicle stem cell progeny during wound healing of the rat skin. PLoS One 7(5):e36421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Martinez-Martinez E, Toscano-Marquez B, Gutierrez-Ospina G (2011) Long-term effects of neonatal capsaicin treatment on intraepidermal nerve fibers and keratinocyte proliferation in rat glabrous skin. Anat Rec (Hoboken) 294(1):173–184

    Article  Google Scholar 

  130. Mouton PR (2002) Principles and practices of unbiased stereology: an introduction for bioscientists. Johns Hopkins University Press, Baltimore, p 214

    Google Scholar 

  131. Howard V, Reed MG (2005) Unbiased stereology: three-dimensional measurement in microscopy, 2nd edn. Garland Science, New York, NY, p 277

    Google Scholar 

  132. Martinez-Martinez E, Uribe-Querol E, Galvan-Hernandez CI, Gutierrez-Ospina G (2016) Stereological quantification of cell-cycle kinetics and mobilization of epithelial stem cells during wound healing. Methods Mol Biol 1453:93–107

    Article  CAS  PubMed  Google Scholar 

  133. Harris LW, Purves D (1989) Rapid remodeling of sensory endings in the corneas of living mice. J Neurosci 9(6):2210–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Carr RW, Delaney CA, Westerman RA, Roberts RG (1993) Denervation impairs cutaneous microvascular function and blister healing in the rat hind limb. Neuroreport 4(5):467–470

    Article  CAS  PubMed  Google Scholar 

  135. Harsum S, Clarke JD, Martin P (2001) A reciprocal relationship between cutaneous nerves and repairing skin wounds in the developing chick embryo. Dev Biol 238(1):27–39

    Article  CAS  PubMed  Google Scholar 

  136. Westerman RA, Carr RW, Delaney CA, Morris MJ, Roberts RG (1993) The role of skin nociceptive afferent nerves in blister healing. Clin Exp Neurol 30:39–60

    CAS  PubMed  Google Scholar 

  137. Fukai T, Takeda A, Uchinuma E (2005) Wound healing in denervated rat skin. Wound Repair Regen 13(2):175–180

    Article  PubMed  Google Scholar 

  138. Maggi CA, Borsini F, Santicioli P, Geppetti P, Abelli L, Evangelista S, Manzini S, Theodorsson-Norheim E, Somma V, Amenta F et al (1987) Cutaneous lesions in capsaicin-pretreated rats. A trophic role of capsaicin-sensitive afferents? Naunyn Schmiedeberg's Arch Pharmacol 336(5):538–545

    CAS  Google Scholar 

  139. Langton AK, Herrick SE, Headon DJ (2008) An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. J Invest Dermatol 128(5):1311–1318

    Article  CAS  PubMed  Google Scholar 

  140. Garcin CL, Ansell DM, Headon DJ, Paus R, Hardman MJ (2016) Hair follicle bulge stem cells appear dispensable for the acute phase of wound re-epithelialization. Stem Cells 34(5):1377–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421

    Article  CAS  PubMed  Google Scholar 

  142. Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8(5):552–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Martínez-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Greene, J.A., Martínez-Martínez, E. (2018). Influence of Sensory Innervation on Epithelial Renewal and Wound Healing. In: Shiffman, M., Low, M. (eds) Vascular Surgery, Neurosurgery, Lower Extremity Ulcers, Antimicrobials, Wound Assessment, Care, Measurement and Repair. Recent Clinical Techniques, Results, and Research in Wounds, vol 5. Springer, Cham. https://doi.org/10.1007/15695_2018_130

Download citation

  • DOI: https://doi.org/10.1007/15695_2018_130

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10715-4

  • Online ISBN: 978-3-030-10716-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics