pp 1-28 | Cite as

Anti-biofilm Agents

Chapter
Part of the Recent Clinical Techniques, Results, and Research in Wounds book series

Abstract

Biofilms are microbial communities with enhanced interbacterial communication and cooperation. A good knowledge of anti-biofilm options is essential to ensuring correct management and treatment of biofilm-driven infections, with two main interest areas, namely prevention of biofilm formation and eradication of mature biofilm. Wounds can become infected with a wide array of germs, and among frequently encountered pathogens are Staphylococcus aureus and Pseudomonas aeruginosa, either separately or in microbial consortia. Depending on the type of wound, different techniques can be used to prevent, reduce, or eradicate biofilms, including mechanical options, surgical wound care, use of specific absorbent dressings, antiseptic soaks, or administering antibiotics either systemically or locally. Antimicrobial associations may be useful alternatives to single-agent therapy for biofilms, but they should be thoughtfully chosen, to ensure synergy. When dealing with S. aureus biofilms, fifth-generation cephalosporins, lipoglycopeptides, lipopeptides, oxazolidinones, or glycylcyclines may display important anti-biofilm effect, and the same is true for the association of rifampin or gentamicin to other active anti-S. aureus agents. For P. aeruginosa biofilm-driven infections, options include fluoroquinolones such as levofloxacin and ciprofloxacin, potentially associated with colistin. Bacteriophages are gradually gaining more important roles in the armamentarium of anti-biofilm agents, and so are engineered peptides or natural products extracted from plants or bacteria.

References

  1. 1.
    Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2(5):445–459Google Scholar
  2. 2.
    Sandulescu O (2014) Bacterial prints in human infectious diseases. Germs 4(3):73Google Scholar
  3. 3.
    Săndulescu O (2016) Managing sticky situations - anti-biofilm agents. Germs 6(2):49Google Scholar
  4. 4.
    Delattin N, Brucker K, Cremer K, Cammue BP, Thevissen K (2017) Antimicrobial peptides as a strategy to combat fungal biofilms. Curr Top Med Chem 17(5):604–612Google Scholar
  5. 5.
    Parasion S, Kwiatek M, Gryko R, Mizak L, Malm A (2014) Bacteriophages as an alternative strategy for fighting biofilm development. Pol J Microbiol 63(2):137–145Google Scholar
  6. 6.
    Neguț A, Streinu-Cercel A, Săndulescu O, Moţoi M, Berciu I, Popa M, Streinu-Cercel A (2017) Bacteriophages – novel biotechnology tools available in clinical practice in Romania. Rom Biotechnol Lett 22(2):12492Google Scholar
  7. 7.
    Van Mellaert L, Shahrooei M, Hofmans D, Eldere JV (2012) Immunoprophylaxis and immunotherapy of Staphylococcus epidermidis infections: challenges and prospects. Expert Rev Vaccines 11(3):319–334Google Scholar
  8. 8.
    Săndulescu O, Streinu-Cercel A, Săndulescu M, Neguț A, Calistru P, Berciu I, Preoțescu L, Streinu-Cercel A (2015) Quorum sensing and biofilm formation in Staphylococcus species. Therapeut Pharmacol Clin Toxicol 19(2):45–51Google Scholar
  9. 9.
    Clark SA, Vinson LA, Eckert G, Gregory RL (2017) Effect of commonly prescribed liquid medications on Streptococcus mutans biofilm. An in vitro study. J Clin Pediatr Dent 41(2):141–146Google Scholar
  10. 10.
    Ng M, Epstein SB, Callahan MT, Piotrowski BO, Simon GL, Roberts AD, Keiser JF, Kaplan JB (2014) Induction of MRSA biofilm by low-dose beta-lactam antibiotics: specificity, prevalence and dose-response effects. Dose Response 12(1):152–161Google Scholar
  11. 11.
    Schilcher K, Andreoni F, Dengler Haunreiter V, Seidl K, Hasse B, Zinkernagel AS (2016) Modulation of Staphylococcus aureus biofilm matrix by subinhibitory concentrations of clindamycin. Antimicrob Agents Chemother 60(10):5957–5967Google Scholar
  12. 12.
    Fujimura S, Sato T, Kikuchi T, Zaini J, Gomi K, Watanabe A (2009) Efficacy of clarithromycin plus vancomycin in mice with implant-related infection caused by biofilm-forming Staphylococcus aureus. J Orthop Sci 14(5):658–661Google Scholar
  13. 13.
    Sano M, Hirose T, Nishimura M, Takahashi S, Matsukawa M, Tsukamoto T (1999) Inhibitory action of clarithromycin on glycocalyx produced by MRSA. J Infect Chemother 5(1):10–15Google Scholar
  14. 14.
    Desroche N, Dropet C, Janod P, Guzzo J (2016) Antibacterial properties and reduction of MRSA biofilm with a dressing combining polyabsorbent fibres and a silver matrix. J Wound Care 25(10):577–584Google Scholar
  15. 15.
    Cooper R, Jenkins L (2016) Binding of two bacterial biofilms to dialkyl carbamoyl chloride (DACC)-coated dressings in vitro. J Wound Care 25(2):76, 8–76,82Google Scholar
  16. 16.
    Săndulescu O, Bleotu C, Matei L, Streinu-Cercel A, Oprea M, Drăgulescu EC, Chifiriuc MC, Rafila A, Pirici D, Tălăpan D, Dorobăț OM, Neguț AC, Oțelea D, Berciu I, Ion DA, Codiță I, Calistru PI (2016) Comparative evaluation of aggressiveness traits in staphylococcal strains from severe infections versus nasopharyngeal carriage. Microb Pathog 102:45–53Google Scholar
  17. 17.
    Mimica MJ, Badue-Pereira MF (2014) Staphylococcus aureus colonization in Brazilian children. Germs 4(1):22Google Scholar
  18. 18.
    Preoțescu L, Streinu-Cercel O (2013) Prevalence of nasal carriage of S. aureus in children. Germs 3(2):49–51Google Scholar
  19. 19.
    Jianu DM, Sandulescu O, Streinu-Cercel A, Berciu I, Blidaru A, Filipescu M, Vartic M, Cobani O, Jianu SA, Talapan D, Dorobat O, Staniceanu F (2016) Microbiologic safety of the transareolar approach in breast augmentation. Aesthet Surg J 36(1):51–57Google Scholar
  20. 20.
    Jianu DM, Streinu-Cercel A, Blidaru A, Filipescu M, Florescu IP, Berciu I, Cobani O, Dorobat O, Jianu SA, Streinu-Cercel O, Stăniceanu F (2013) Breast ecology assessment in the study of local microflora - study protocol. Germs 3(1):14–17Google Scholar
  21. 21.
    Streinu-Cercel A, Jianu DM, Streinu-Cercel O (2013) Breast ecology assessment in the study of local microflora. Aesthet Surg J 33(5):747–748Google Scholar
  22. 22.
    Streinu-Cercel A, Jianu DM, Săndulescu O (2016) Response to “commentary on: microbiologic safety of the transareolar approach in breast augmentation”. Aesthet Surg J 36(4):NP177Google Scholar
  23. 23.
    Savijoki K, Skogman M, Fallarero A, Nyman TA, Sukura A, Vuorela P, Varmanen P (2016) Penicillin G increases the synthesis of a suicidal marker (CidC) and virulence (HlgBC) proteins in Staphylococcus aureus biofilm cells. Int J Med Microbiol 306(1):69–74Google Scholar
  24. 24.
    Yamasaki O, Akiyama H, Toi Y, Arata J (2001) A combination of roxithromycin and imipenem as an antimicrobial strategy against biofilms formed by Staphylococcus aureus. J Antimicrob Chemother 48(4):573–577Google Scholar
  25. 25.
    Rodrigues A, Gomes A, Marcal PH, Dias-Souza MV (2017) Dexamethasone abrogates the antimicrobial and antibiofilm activities of different drugs against clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa. J Adv Res 8(1):55–61Google Scholar
  26. 26.
    Lázaro-Díez M, Remuzgo-Martínez S, Rodríguez-Mirones C, Acosta F, Icardo JM, Martínez-Martínez L, Ramos-Vivas J (2016) Effects of subinhibitory concentrations of ceftaroline on methicillin-resistant Staphylococcus aureus (MRSA) biofilms. PLoS One 11(1):e0147569Google Scholar
  27. 27.
    Landini G, Riccobono E, Giani T, Arena F, Rossolini GM, Pallecchi L (2015) Bactericidal activity of ceftaroline against mature Staphylococcus aureus biofilms. Int J Antimicrob Agents 45(5):551–553Google Scholar
  28. 28.
    Meeker DG, Beenken KE, Mills WB, Loughran AJ, Spencer HJ, Lynn WB, Smeltzer MS (2016) Evaluation of antibiotics active against methicillin-resistant Staphylococcus aureus based on activity in an established biofilm. Antimicrob Agents Chemother 60(10):5688–5694Google Scholar
  29. 29.
    Abbanat D, Shang W, Amsler K, Santoro C, Baum E, Crespo-Carbone S, Lynch AS (2014) Evaluation of the in vitro activities of ceftobiprole and comparators in staphylococcal colony or microtitre plate biofilm assays. Int J Antimicrob Agents 43(1):32–39Google Scholar
  30. 30.
    Niska JA, Shahbazian JH, Ramos RI, Pribaz JR, Billi F, Francis KP, Miller LS (2012) Daptomycin and tigecycline have broader effective dose ranges than vancomycin as prophylaxis against a Staphylococcus aureus surgical implant infection in mice. Antimicrob Agents Chemother 56(5):2590–2597Google Scholar
  31. 31.
    Tang HJ, Chen CC, Cheng KC, Toh HS, BA S, Chiang SR, Ko WC, Chuang YC (2012) In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J Antimicrob Chemother 67(4):944–950Google Scholar
  32. 32.
    Göçer H, Emir D, Önger ME, Dabak N (2017) Effects of bone cement loaded with teicoplanin, N-acetylcysteine or their combination on Staphylococcus aureus biofilm formation: an in vitro study. Eklem Hastalik Cerrahisi 28(1):13–18Google Scholar
  33. 33.
    Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M (2013) Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am 95(2):117–125Google Scholar
  34. 34.
    Baldoni D, Furustrand Tafin U, Aeppli S, Angevaare E, Oliva A, Haschke M, Zimmerli W, Trampuz A (2013) Activity of dalbavancin, alone and in combination with rifampicin, against meticillin-resistant Staphylococcus aureus in a foreign-body infection model. Int J Antimicrob Agents 42(3):220–225Google Scholar
  35. 35.
    Fernández J, Greenwood-Quaintance KE, Patel R (2016) In vitro activity of dalbavancin against biofilms of staphylococci isolated from prosthetic joint infections. Diagn Microbiol Infect Dis 85(4):449–451Google Scholar
  36. 36.
    El Haj C, Murillo O, Ribera A, Garcia-Somoza D, Tubau F, Cabellos C, Cabo J, Ariza J (2017) The anti-biofilm effect of macrolides in a rat model of S. aureus foreign-body infection: might it be of clinical relevance? Med Microbiol Immunol 206(1):31–39Google Scholar
  37. 37.
    Woo SG, Lee SY, Lee SM, Lim KH, Ha EJ, Eom YB (2017) Activity of novel inhibitors of Staphylococcus aureus biofilms. Folia Microbiol (Praha) 62(2):157–167Google Scholar
  38. 38.
    Lee JY, Ko KS, Peck KR, WS O, Song JH (2006) In vitro evaluation of the antibiotic lock technique (ALT) for the treatment of catheter-related infections caused by staphylococci. J Antimicrob Chemother 57(6):1110–1115Google Scholar
  39. 39.
    Thomas N, Thorn C, Richter K, Thierry B, Prestidge C (2016) Efficacy of poly-lactic-co-glycolic acid micro- and nanoparticles of ciprofloxacin against bacterial biofilms. J Pharm Sci 105(10):3115–3122Google Scholar
  40. 40.
    Molina-Manso D, del Prado G, Ortiz-Perez A, Manrubia-Cobo M, Gomez-Barrena E, Cordero-Ampuero J, Esteban J (2013) In vitro susceptibility to antibiotics of staphylococci in biofilms isolated from orthopaedic infections. Int J Antimicrob Agents 41(6):521–523Google Scholar
  41. 41.
    Cafiso V, Bertuccio T, Spina D, Purrello S, Stefani S (2010) Tigecycline inhibition of a mature biofilm in clinical isolates of Staphylococcus aureus: comparison with other drugs. FEMS Immunol Med Microbiol 59(3):466–469Google Scholar
  42. 42.
    Vasilev K, Poulter N, Martinek P, Griesser HJ (2011) Controlled release of levofloxacin sandwiched between two plasma polymerized layers on a solid carrier. ACS Appl Mater Interfaces 3(12):4831–4836Google Scholar
  43. 43.
    Parra-Ruiz J, Vidaillac C, Rose WE, Rybak MJ (2010) Activities of high-dose daptomycin, vancomycin, and moxifloxacin alone or in combination with clarithromycin or rifampin in a novel in vitro model of Staphylococcus aureus biofilm. Antimicrob Agents Chemother 54(10):4329–4334Google Scholar
  44. 44.
    Bayer AS, Abdelhady W, Li L, Gonzales R, Xiong YQ (2016) Comparative efficacies of tedizolid phosphate, linezolid, and vancomycin in a murine model of subcutaneous catheter-related biofilm infection due to methicillin-susceptible and -resistant Staphylococcus aureus. Antimicrob Agents Chemother 60(8):5092–5096Google Scholar
  45. 45.
    van der Horst AS, Medda S, Ledbetter E, Liu A, Weinhold P, Del Gaizo DJ, Dahners L (2015) Combined local and systemic antibiotic treatment is effective against experimental Staphylococcus aureus peri-implant biofilm infection. J Orthop Res 33(9):1320–1326Google Scholar
  46. 46.
    Rose WE, Otto DP, Aucamp ME, Miller Z, de Villiers MM (2015) Prevention of biofilm formation by methacrylate-based copolymer films loaded with rifampin, clarithromycin, doxycycline alone or in combination. Pharm Res 32(1):61–73Google Scholar
  47. 47.
    McConeghy KW, LaPlante KL (2010) In vitro activity of tigecycline in combination with gentamicin against biofilm-forming Staphylococcus aureus. Diagn Microbiol Infect Dis 68(1):1–6Google Scholar
  48. 48.
    de Oliveira A, Cataneli Pereira V, Pinheiro L, Moraes Riboli DF, Benini Martins K, Ribeiro de Souza d, Cunha Mde L (2016) Antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci. Int J Mol Sci 17(9):pii: E1423Google Scholar
  49. 49.
    Giacometti A, Cirioni O, Ghiselli R, Orlando F, Mocchegiani F, Silvestri C, Licci A, De Fusco M, Provinciali M, Saba V, Scalise G (2005) Comparative efficacies of quinupristin-dalfopristin, linezolid, vancomycin, and ciprofloxacin in treatment, using the antibiotic-lock technique, of experimental catheter-related infection due to Staphylococcus aureus. Antimicrob Agents Chemother 49(10):4042–4045Google Scholar
  50. 50.
    Berlutti F, Frioni A, Natalizi T, Pantanella F, Valenti P (2014) Influence of sub-inhibitory antibiotics and flow condition on Staphylococcus aureus ATCC 6538 biofilm development and biofilm growth rate: BioTimer assay as a study model. J Antibiot (Tokyo) 67(11):763–769Google Scholar
  51. 51.
    Magalhaes AP, Lopes SP, Pereira MO (2016) Insights into cystic fibrosis polymicrobial consortia: the role of species interactions in biofilm development, phenotype, and response to in-use antibiotics. Front Microbiol 7:2146Google Scholar
  52. 52.
    Parahitiyawa NB, Chu FC, Leung WK, Yam WC, Jin LJ, Samaranayake LP (2015) Clonality of bacterial consortia in root canals and subjacent gingival crevices. J Investig Clin Dent 6(1):32–39Google Scholar
  53. 53.
    Phalak P, Chen J, Carlson RP, Henson MA (2016) Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species. BMC Syst Biol 10(1):90Google Scholar
  54. 54.
    Meeker DG, Jenkins SV, Miller EK, Beenken KE, Loughran AJ, Powless A, Muldoon TJ, Galanzha EI, Zharov VP, Smeltzer MS, Chen J (2016) Synergistic photothermal and antibiotic killing of biofilm-associated Staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs. ACS Infect Dis 2(4):241–250Google Scholar
  55. 55.
    Fujimura S, Sato T, Hayakawa S, Kawamura M, Furukawa E, Watanabe A (2015) Antimicrobial efficacy of combined clarithromycin plus daptomycin against biofilms-formed methicillin-resistant Staphylococcus aureus on titanium medical devices. J Infect Chemother 21(10):756–759Google Scholar
  56. 56.
    Lode H, Hoffken G, Prinzing C, Glatzel P, Wiley R, Olschewski P, Sievers B, Reimnitz D, Borner K, Koeppe P (1987) Comparative pharmacokinetics of new quinolones. Drugs 34(Suppl 1):21–25Google Scholar
  57. 57.
    Barber KE, Werth BJ, McRoberts JP, Rybak MJ (2014) A novel approach utilizing biofilm time-kill curves to assess the bactericidal activity of ceftaroline combinations against biofilm-producing methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 58(5):2989–2992Google Scholar
  58. 58.
    Jørgensen NP, Skovdal SM, Meyer RL, Dagnæs-Hansen F, Fuursted K, Petersen E (2016) Rifampicin-containing combinations are superior to combinations of vancomycin, linezolid and daptomycin against Staphylococcus aureus biofilm infection in vivo and in vitro. Pathog Dis 74(4):ftw019Google Scholar
  59. 59.
    Martinez SR, Rocca DM, Aiassa V, Becerra MC (2016) Linezolid as an eradication agent against assembled methicillin-resistant Staphylococcus aureus biofilms. RSC Adv 6(103):101023–101028Google Scholar
  60. 60.
    Zhou TH, Su M, Shang BC, Ma T, Xu GL, Li HL, Chen QH, Sun W, Xu YQ (2012) Nano-hydroxyapatite/beta-tricalcium phosphate ceramics scaffolds loaded with cationic liposomal ceftazidime: preparation, release characteristics in vitro and inhibition to Staphylococcus aureus biofilms. Drug Dev Ind Pharm 38(11):1298–1304Google Scholar
  61. 61.
    Khalifa L, Shlezinger M, Beyth S, Houri-Haddad Y, Coppenhagen-Glazer S, Beyth N, Hazan R (2016) Phage therapy against Enterococcus faecalis in dental root canals. J Oral Microbiol 8:32157Google Scholar
  62. 62.
    Negut AC, Chifiriuc MC, Sandulescu O, Streinu-Cercel A, Oprea M, Dragulescu EC, Gheorghe I, Berciu I, Coralia B, Popa M, Otelea D, Talapan D, Dorobat O, Codita I, Popa MI (2016) Bacteriophage-driven inhibition of biofilm formation in Staphylococcus strains from patients attending a Romanian reference center for infectious diseases. FEMS Microbiol Lett 363(18):pii: fnw193Google Scholar
  63. 63.
    Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183(23):6746–6751Google Scholar
  64. 64.
    Moskowitz SM, Foster JM, Emerson J, Burns JL (2004) Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42(5):1915–1922Google Scholar
  65. 65.
    Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, Macleod C, Aaron SD, Harbour C (2005) Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 43(10):5085–5090Google Scholar
  66. 66.
    Riera E, Macia MD, Mena A, Mulet X, Perez JL, Ge Y, Oliver A (2010) Anti-biofilm and resistance suppression activities of CXA-101 against chronic respiratory infection phenotypes of Pseudomonas aeruginosa strain PAO1. J Antimicrob Chemother 65(7):1399–1404Google Scholar
  67. 67.
    Lee MY, Ko KS, Song JH, Peck KR (2007) In vitro effectiveness of the antibiotic lock technique (ALT) for the treatment of catheter-related infections by Pseudomonas aeruginosa and Klebsiella pneumoniae. J Antimicrob Chemother 60(4):782–787Google Scholar
  68. 68.
    Shi HQ, Sun FJ, Chen JH, Yong XL, QY O, Feng W, Xia PY (2014) Opposite effects of cefoperazone and ceftazidime on Sribosylhomocysteine lyase/autoinducer-2 quorum sensing and biofilm formation by an Escherichia coli clinical isolate. Mol Med Rep 10(5):2334–2340Google Scholar
  69. 69.
    Velez Perez AL, Schmidt-Malan SM, Kohner PC, Karau MJ, Greenwood-Quaintance KE, Patel R (2016) In vitro activity of ceftolozane/tazobactam against clinical isolates of Pseudomonas aeruginosa in the planktonic and biofilm states. Diagn Microbiol Infect Dis 85(3):356–359Google Scholar
  70. 70.
    Manavathu EK, Vager DL, Vazquez JA (2014) Development and antimicrobial susceptibility studies of in vitro monomicrobial and polymicrobial biofilm models with Aspergillus fumigatus and Pseudomonas aeruginosa. BMC Microbiol 14:53Google Scholar
  71. 71.
    Ozbek B, Mataraci-Kara E (2016) Comparative in vitro efficacies of various antipseudomonal antibiotics based catheter lock solutions on eradication of Pseudomonas aeruginosa biofilms. J Chemother 28(1):20–24Google Scholar
  72. 72.
    Bowler LL, Zhanel GG, Ball TB, Saward LL (2012) Mature Pseudomonas aeruginosa biofilms prevail compared to young biofilms in the presence of ceftazidime. Antimicrob Agents Chemother 56(9):4976–4979Google Scholar
  73. 73.
    Haagensen JA, Verotta D, Huang L, Spormann A, Yang K (2015) New in vitro model to study the effect of human simulated antibiotic concentrations on bacterial biofilms. Antimicrob Agents Chemother 59(7):4074–4081Google Scholar
  74. 74.
    Mohamed NM, Youssef AA (2011) In vitro activity of tigecycline and comparators against gram-negative bacteria isolated from a tertiary hospital in Alexandria, Egypt. Microb Drug Resist 17(4):489–495Google Scholar
  75. 75.
    Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Hoiby N (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48(4):1175–1187Google Scholar
  76. 76.
    Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Hoiby N (2004) Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 48(4):1168–1174Google Scholar
  77. 77.
    Lora-Tamayo J, Murillo O, Bergen PJ, Nation RL, Poudyal A, Luo X, HY Y, Ariza J, Li J (2014) Activity of colistin combined with doripenem at clinically relevant concentrations against multidrug-resistant Pseudomonas aeruginosa in an in vitro dynamic biofilm model. J Antimicrob Chemother 69(9):2434–2442Google Scholar
  78. 78.
    Mulet X, Macia MD, Mena A, Juan C, Perez JL, Oliver A (2009) Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants. Antimicrob Agents Chemother 53(4):1552–1560Google Scholar
  79. 79.
    Elkhatib W, Noreddin A (2014) In vitro antibiofilm efficacies of different antibiotic combinations with zinc sulfate against Pseudomonas aeruginosa recovered from hospitalized patients with urinary tract infection. Antibiotics (Basel) 3(1):64–84Google Scholar
  80. 80.
    Benthall G, Touzel RE, Hind CK, Titball RW, Sutton JM, Thomas RJ, Wand ME (2015) Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella. Int J Antimicrob Agents 46(5):538–545Google Scholar
  81. 81.
    Mikuniya T, Kato Y, Ida T, Maebashi K, Monden K, Kariyama R, Kumon H (2007) Treatment of Pseudomonas aeruginosa biofilms with a combination of fluoroquinolones and fosfomycin in a rat urinary tract infection model. J Infect Chemother 13(5):285–290Google Scholar
  82. 82.
    Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68(1):223–240Google Scholar
  83. 83.
    Yan P, Liu W, Kong J, Wu H, Chen Y (2014) Prevention of catheter-related Pseudomonas aeruginosa infection by levofloxacin-impregnated catheters in vitro and in vivo. Chin Med J (Engl) 127(1):54–58Google Scholar
  84. 84.
    Husain FM, Ahmad I (2013) Doxycycline interferes with quorum sensing-mediated virulence factors and biofilm formation in gram-negative bacteria. World J Microbiol Biotechnol 29(6):949–957Google Scholar
  85. 85.
    Anderson GG, Kenney TF, Macleod DL, Henig NR, O'Toole GA (2013) Eradication of Pseudomonas aeruginosa biofilms on cultured airway cells by a fosfomycin/tobramycin antibiotic combination. Pathog Dis 67(1):39–45Google Scholar
  86. 86.
    Cai Y, Fan Y, Wang R, An MM, Liang BB (2009) Synergistic effects of aminoglycosides and fosfomycin on Pseudomonas aeruginosa in vitro and biofilm infections in a rat model. J Antimicrob Chemother 64(3):563–566Google Scholar
  87. 87.
    Haagensen JA, Klausen M, Ernst RK, Miller SI, Folkesson A, Tolker-Nielsen T, Molin S (2007) Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189(1):28–37Google Scholar
  88. 88.
    Zahra MJ, Hamed H, Mohammad RY, Nosratollah Z, Akbarzadeh A, Morteza M (2017) Evaluation and study of antimicrobial activity of nanoliposomal meropenem against Pseudomonas aeruginosa isolates. Artif Cells Nanomed Biotechnol 45(5):975–980Google Scholar
  89. 89.
    Giamarellos-Bourboulis EJ, Antonopoulou A, Raftogiannis M, Koutoukas P, Tsaganos T, Tziortzioti V, Panagou C, Adamis T, Giamarellou H (2006) Clarithromycin is an effective immunomodulator when administered late in experimental pyelonephritis by multidrug-resistant Pseudomonas aeruginosa. BMC Infect Dis 6:31Google Scholar
  90. 90.
    Cirioni O, Ghiselli R, Silvestri C, Minardi D, Gabrielli E, Orlando F, Rimini M, Brescini L, Muzzonigro G, Guerrieri M, Giacometti A (2011) Effect of the combination of clarithromycin and amikacin on Pseudomonas aeruginosa biofilm in an animal model of ureteral stent infection. J Antimicrob Chemother 66(6):1318–1323Google Scholar
  91. 91.
    Kadar B, Szasz M, Kristof K, Pesti N, Krizsan G, Szentandrassy J, Rokusz L, Nagy K, Szabo D (2010) In vitro activity of clarithromycin in combination with other antimicrobial agents against biofilm-forming Pseudomonas aeruginosa strains. Acta Microbiol Immunol Hung 57(3):235–245Google Scholar
  92. 92.
    Lutz L, Pereira DC, Paiva RM, Zavascki AP, Barth AL (2012) Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm. BMC Microbiol 12:196Google Scholar
  93. 93.
    Mikuniya T, Kato Y, Kariyama R, Monden K, Hikida M, Kumon H (2005) Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm. Acta Med Okayama 59(5):209–216Google Scholar
  94. 94.
    Streinu-Cercel A (2014) Colistin in the management of severe infections with multidrug resistant gram-negative bacilli. Germs 4(1):7–8Google Scholar
  95. 95.
    Fernández-Olmos A, García-Castillo M, Maiz L, Lamas A, Baquero F, Cantón R (2012) In vitro prevention of Pseudomonas aeruginosa early biofilm formation with antibiotics used in cystic fibrosis patients. Int J Antimicrob Agents 40(2):173–176Google Scholar
  96. 96.
    Lashua LP, Melvin JA, Deslouches B, Pilewski JM, Montelaro RC, Bomberger JM (2016) Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells. J Antimicrob Chemother 71(8):2200–2207Google Scholar
  97. 97.
    Viganor L, Galdino AC, Nunes AP, Santos KR, Branquinha MH, Devereux M, Kellett A, McCann M, Santos AL (2016) Anti-Pseudomonas aeruginosa activity of 1,10-phenanthroline-based drugs against both planktonic- and biofilm-growing cells. J Antimicrob Chemother 71(1):128–134Google Scholar
  98. 98.
    Banerjee M, Parai D, Chattopadhyay S, Mukherjee SK (2017) Andrographolide: antibacterial activity against common bacteria of human health concern and possible mechanism of action. Folia Microbiol (Praha) 62(3):237–244Google Scholar
  99. 99.
    Sarkar P, Acharyya S, Banerjee A, Patra A, Thankamani K, Koley H, Bag PK (2016) Intracellular, biofilm-inhibitory and membrane-damaging activities of nimbolide isolated from Azadirachta indica A. Juss (Meliaceae) against meticillin-resistant Staphylococcus aureus. J Med Microbiol 65(10):1205–1214Google Scholar
  100. 100.
    LaPlante KL, Sarkisian SA, Woodmansee S, Rowley DC, Seeram NP (2012) Effects of cranberry extracts on growth and biofilm production of Escherichia coli and Staphylococcus species. Phytother Res 26(9):1371–1374Google Scholar
  101. 101.
    Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, Jensen PO, Moser C, Nielsen KF, Eberl L, Larsen TO, Tanner D, Hoiby N, Bjarnsholt T, Givskov M (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56(5):2314–2325Google Scholar
  102. 102.
    Chen W, Li B, Li S, Ou YW, Ou Q (2016) Effects of Scutellaria baicalensis on activity and biofilm formation of Klebsiella pneumoniae. Chin Med Sci J 31(3):180–184Google Scholar
  103. 103.
    Chen Y, Liu T, Wang K, Hou C, Cai S, Huang Y, Du Z, Huang H, Kong J (2016) Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One 11(4):e0153468Google Scholar
  104. 104.
    Ta CA, Freundorfer M, Mah TF, Otarola-Rojas M, Garcia M, Sanchez-Vindas P, Poveda L, Maschek JA, Baker BJ, Adonizio AL, Downum K, Durst T, Arnason JT (2014) Inhibition of bacterial quorum sensing and biofilm formation by extracts of neotropical rainforest plants. Planta Med 80(4):343–350Google Scholar
  105. 105.
    Melo TA, Dos Santos TF, de Almeida ME, Junior LA, Andrade EF, Rezende RP, Marques LM, Romano CC (2016) Inhibition of Staphylococcus aureus biofilm by Lactobacillus isolated from fine cocoa. BMC Microbiol 16(1):250Google Scholar
  106. 106.
    Varma P, Nisha N, Dinesh KR, Kumar AV, Biswas R (2011) Anti-infective properties of Lactobacillus fermentum against Staphylococcus aureus and Pseudomonas aeruginosa. J Mol Microbiol Biotechnol 20(3):137–143Google Scholar
  107. 107.
    Sadowska B, Walencka E, Wieckowska-Szakiel M, Rozalska B (2010) Bacteria competing with the adhesion and biofilm formation by Staphylococcus aureus. Folia Microbiol (Praha) 55(5):497–501Google Scholar
  108. 108.
    Lakhtin M, Alyoshkin V, Lakhtin V, Afanasyev S, Pozhalostina L, Pospelova V (2010) Probiotic Lactobacillus and bifidobacterial lectins against Candida albicans and Staphylococcus aureus clinical strains: new class of the pathogen biofilm destructors. Probiotics Antimicrob Proteins 2(3):186–196Google Scholar
  109. 109.
    Field D, OC R, Cotter PD, Ross RP, Hill C (2016) In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Front Microbiol 7:508Google Scholar
  110. 110.
    Jang CH, Piao YL, Huang X, Yoon EJ, Park SH, Lee K, Zhan CG, Cho H (2016) Modeling and re-engineering of Azotobacter vinelandii alginate lyase to enhance its catalytic efficiency for accelerating biofilm degradation. PLoS One 11(6):e0156197Google Scholar
  111. 111.
    Hodges NA, Gordon CA (1991) Protection of Pseudomonas aeruginosa against ciprofloxacin and beta-lactams by homologous alginate. Antimicrob Agents Chemother 35(11):2450–2452Google Scholar
  112. 112.
    Dosler S, Karaaslan E (2014) Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 62:32–37Google Scholar
  113. 113.
    Gopal R, Lee JH, Kim YG, Kim MS, Seo CH, Park Y (2013) Anti-microbial, anti-biofilm activities and cell selectivity of the NRC-16 peptide derived from witch flounder, Glyptocephalus cynoglossus. Mar Drugs 11(6):1836–1852Google Scholar
  114. 114.
    Cirioni O, Mocchegiani F, Cacciatore I, Vecchiet J, Silvestri C, Baldassarre L, Ucciferri C, Orsetti E, Castelli P, Provinciali M, Vivarelli M, Fornasari E, Giacometti A (2013) Quorum sensing inhibitor FS3-coated vascular graft enhances daptomycin efficacy in a rat model of staphylococcal infection. Peptides 40:77–81Google Scholar
  115. 115.
    Simonetti O, Cirioni O, Mocchegiani F, Cacciatore I, Silvestri C, Baldassarre L, Orlando F, Castelli P, Provinciali M, Vivarelli M, Fornasari E, Giacometti A, Offidani A (2013) The efficacy of the quorum sensing inhibitor FS8 and tigecycline in preventing prosthesis biofilm in an animal model of staphylococcal infection. Int J Mol Sci 14(8):16321–16332Google Scholar
  116. 116.
    Bahar AA, Liu Z, Totsingan F, Buitrago C, Kallenbach N, Ren D (2015) Synthetic dendrimeric peptide active against biofilm and persister cells of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 99(19):8125–8135Google Scholar
  117. 117.
    Dawgul M, Baranska-Rybak W, Kamysz E, Karafova A, Nowicki R, Kamysz W (2012) Activity of short lipopeptides and conventional antimicrobials against planktonic cells and biofilms formed by clinical strains of Staphylococcus aureus. Future Med Chem 4(12):1541–1551Google Scholar
  118. 118.
    Yang H, Bi Y, Shang X, Wang M, Linden SB, Li Y, Nelson DC, Wei H (2016) Antibiofilm activities of a novel chimeolysin against Streptococcus mutans under physiological and cariogenic conditions. Antimicrob Agents Chemother 60(12):7436–7443Google Scholar
  119. 119.
    Streinu-Cercel O (2013) Expected sensitivity to antibiotics in bacterial infections. Germs 3(1):7Google Scholar
  120. 120.
    Pulcini C, Tebano G, Mutters NT, Tacconelli E, Cambau E, Kahlmeter G, Jarlier V (2017) Selective reporting of antibiotic susceptibility test results in European countries: an ESCMID cross-sectional survey. Int J Antimicrob Agents 49(2):162–166Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Infectious DiseasesCarol Davila University of Medicine and Pharmacy, National Institute for Infectious Diseases “Prof. Dr. Matei Balş”BucharestRomania
  2. 2.Department of Oral ImplantologyCarol Davila University of Medicine and PharmacyBucharestRomania

Personalised recommendations