Skip to main content

Biofilm: Clinical Experience

  • Chapter
  • First Online:
Biofilm, Pilonidal Cysts and Sinuses

Part of the book series: Recent Clinical Techniques, Results, and Research in Wounds ((RCTRRW,volume 1))

  • 479 Accesses

Abstract

Bacteria in biofilms are very resistant on the treatment with dressings or antibiotics because of their extracellular polysaccharide matrix on a surface. We have indirect clinical indicator for biofilm and less possibilities for real identification. Surgical debridement is most successful for removing the biofilm, particularly in combination with antiseptics. Dressings with silver, polyheksanide, iodine, octenidine, and honey are sufficiently effective only as a part of multimodal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Percival SL, Bowler PG (2004) Biofilms and their potential role in wound healing. Wounds 16(7):234–240

    Google Scholar 

  2. Ručigaj TP (2016) Biofilm and our clinical experience. Acta Med Croatica 70:57–59

    PubMed  Google Scholar 

  3. Alhede M, Alhede M (2014) The biofilm challenge. Eur Wound Manage Assoc J 14(1):54–58

    Google Scholar 

  4. Loewenthal J (1962) Sources and sequelae of surgical sepsis. BMJ 1:1437–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cutting KF, Harding KG (1994) Criteria for identifying wound infection. J Wound Care 3:198–201

    Article  CAS  PubMed  Google Scholar 

  6. Ovington L (2003) Bacterial toxins and wound healing. Ostomy Wound Manage 49(7A Suppl):8–12

    PubMed  Google Scholar 

  7. European Wound Management Association (EWMA) (2005) Position document: identifying criteria for wound infection. MEP Ltd., London

    Google Scholar 

  8. Metcalf DG, Parsons D, Bowler PB (2016) Development of a next-generation antimicrobial wound dressing. Acta Med Croatica 70:49–56

    PubMed  Google Scholar 

  9. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    Article  PubMed  PubMed Central  Google Scholar 

  10. Loeb GI, Neihof RA (1975) Marine conditioning films. Adv Chem 145:319–335

    Article  CAS  Google Scholar 

  11. Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40:75–84

    CAS  PubMed  Google Scholar 

  12. Marsh PD (1995) Dental plaque. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, pp 282–300

    Chapter  Google Scholar 

  13. Mittelman MW (1996) Adhesion to biomaterials. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley-Liss, Inc., New York, pp 89–127

    Google Scholar 

  14. Fletcher M (1988) Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J Bacteriol 170:2027–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Corpe WA (1980) Microbial surface components involved in adsorption of microorganisms onto surfaces. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley, New York, pp 105–144

    Google Scholar 

  16. Pringle JH, Fletcher M (1983) Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. Appl Environ Microbiol 45:811–817

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bendinger B, Rijnaarts HHM, Altendorf K, Zehnder AJB (1993) Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl Environ Microbiol 59:3973–3977

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Williams V, Fletcher M (1996) Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Appl Environ Microbiol 62:1004

    Google Scholar 

  19. Fletcher M (1988) The applications of interference reflection microscopy to the study of bacterial adhesion to solid surfaces. In: Houghton DR, Smith RN, Eggins HOW (eds) Biodeterioration 7. Elsevier Applied Science, London, pp 31–35

    Chapter  Google Scholar 

  20. Becker P, Hufnagle W, Peters G, Herrmann M (2001) Detection of different gene expression in biofilm-forming versus planktonic populations of Staphylococcus aureus using micro-representational-difference analysis. Appl Environ Microbiol 67:2958–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skrlin J (2016) Impact of biofilm on healing and a method for identifying it in the wound. Acta Med Croatica 70:29–32

    PubMed  Google Scholar 

  22. Wolcott R (2014) Understanding biofilm formation and biofilm-based wound care. Wound Middle East (Wound International) 1:24–26

    Google Scholar 

  23. Metcalf DG, Bowler PG, Hurlow J (2014) A clinical algorithm for wound biofilm identification. J Wound Care 23(3):137–138. 140-2

    Article  CAS  PubMed  Google Scholar 

  24. Kučišec-Tepeš N (2016) The role of antiseptics and strategy of biofilm removal in chronic wound. Acta Med Croatica 70:33–42

    PubMed  Google Scholar 

  25. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes Infect 2:1051–1060

    Article  CAS  PubMed  Google Scholar 

  27. James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16(1):37–44

    Article  PubMed  Google Scholar 

  28. James GA, Beaudette L, Costerton JW (1995) Interspecies bacterial interactions in biofilms. J Ind Microbiol 15:257–262

    Article  CAS  Google Scholar 

  29. Gilbert P, Evans DJ, Brown MRW (1993) Formation and dispersal of bacterial biofilms in vivo and in situ. J Appl Bacteriol 74 Suppl:67S–78S

    Article  CAS  PubMed  Google Scholar 

  30. Marinović Kulišić S, Lipozenčić J, Tunuković S (2016) Antimicrobial dressings for infected ulcer and clinical comprehension of biofilm. Acta Med Croatica 70:23–27

    Google Scholar 

  31. Davies CE, Hill KE, Wilson MJ, Stephens P, Hill CM, Harding KG, Thomas DW (2004) Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and nonhealing chronic venous leg ulcers. J Clin Microbiol 42(8):3549–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirketerp-Moller K, Jensen PO, Fazli M, Madsen KG, Pedersen J, Moser C, Tolker-Nielsen T, Hoiby N, Givskov M, Bjarnsholt T (2008) Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol 46(8):2717–2722

    Article  PubMed  PubMed Central  Google Scholar 

  33. Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM (2008) Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen 182:6482–6489

    Google Scholar 

  34. Li X, Kong H, Mout R, Saha K, Moyano DF, Robinson SM, Rana S, Zhang X, Riley MA, Rotello VM (2014) Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor. ACS Nano 8:12014–12019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nistico L, Gieseke A, Stoodley P, Hall-Stoodley L, Kerschner JE, Ehrlich GD (2009) Fluorescence “in situ” hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa. Methods Mol Biol 493:191–213

    Article  CAS  PubMed  Google Scholar 

  36. Oates A, Bowling FL, Boultin AJM, Bowler PG, Metcalf DG, McBain AJ (2014) The visualization of biofilms in chronic diabetic foot wounds using routine diagnostic microscopy methods. J Diabetes Res 2014:153586

    Article  PubMed  PubMed Central  Google Scholar 

  37. Malic S, Hill KE, Hayes A, Percival SL, Thomas DW, Williams DW (2009) Detection and identifi cation of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology 155(Pt 8):2603–2611

    Article  CAS  PubMed  Google Scholar 

  38. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122

    Article  CAS  PubMed  Google Scholar 

  39. Pulcini E (2001) The effects of initial adhesion events on the physiology of Pseudomonas aeruginosa [Ph.D. dissertation]. Montana State University, Bozeman

    Google Scholar 

  40. Bashan Y, Levanony H (1988) Active attachment of Azospirillum brasilense Cd to quartz sand and to a light-textured soil by protein bridging. J Gen Microbiol 134:2269–2279

    CAS  Google Scholar 

  41. Danielsson A, Norkrans B, Bjornsson A (1977) On bacterial adhesion - the effect of certain enzymes on adhered cells in a marine Pseudomonas sp. Bot Mar 20:13–17

    Article  CAS  Google Scholar 

  42. Nickel JC, Ruseska I, Wright JB, Costerton JW (1985) Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  CAS  PubMed  Google Scholar 

  44. Billings N, Millan M, Caldara M, Rusconi R, Tarasova Y, Stocker R, Ribbeck K (2013) The extracellular matrix Component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 9:e1003526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    Article  CAS  PubMed  Google Scholar 

  46. Chiang WC, Nilsson M, Jensen PŘ, Hřiby N, Nielsen TE, Givskov M, Tolker-Nielsen T (2013) Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 57(5):2352–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4:e1000213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Walker TS, Tomlin KL, Worthen GS, Poch KR, Lieber JG, Saavedra MT, Fessler MB, Malcolm KC, Vasil ML, Nick JA (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73:3693–3701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Purdy Drew KR, Sanders LK, Culumber ZW, Zribi O, Wong GC (2009) Cationic amphiphiles increase activity of aminoglycoside antibiotic tobramycin in the presence of airway polyelectrolytes. J Am Chem Soc 131:486–493

    Article  CAS  PubMed  Google Scholar 

  50. Kučišec-Tepeš N (2015) Antiseptics in the prevention of chronic wound infection-Facts and misconceptions. Acta Med Croatica 69(Suppl 1):91–99

    Google Scholar 

  51. Bjarnsholt T, Kirketerp-Mřller K, Kristiansen S, Phipps R, Nielsen AK, Jensen PŘ, Hřiby N, Givskov M (2007) Silver against Pseudomonas aeruginosa biofilms. APMIS 115(8):921

    Article  CAS  PubMed  Google Scholar 

  52. Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, Payne WG, Smith DJ, Robson MC (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4:114–122

    Article  PubMed  PubMed Central  Google Scholar 

  53. Percival SL, Suleman L (2015) Slough and biofi lm: removal of barriers to wound healing by desloughing. J Wound Care 24:498–510

    Article  CAS  PubMed  Google Scholar 

  54. Heggers J, Goodheart RE, Washington J, McCoy L, Carino E, Dang T, Edgar P, Maness C, Chinkes D (2005) Therapeutic efficacy of three silver dressings in an infected animal model. J Burn Care Rehabil 26:53–56

    Article  PubMed  Google Scholar 

  55. Percival SL, Bowler PG, Woods EJ (2008) Assessing the effect of an antimicrobial wound dressing on biofilms. Wound Repair Regen 16:52–57

    Article  PubMed  Google Scholar 

  56. Qian Z, Stoodley P, Pitt WG (1996) Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation. Biomaterials 17:1975–1980

    Article  CAS  PubMed  Google Scholar 

  57. Qian Z, Sagers RD (1999) Pitt WG. Investigation of the mechanism of the bioacoustic effect. J Biomed Mater Res 44:198–205

    Article  CAS  PubMed  Google Scholar 

  58. Karau MJ, Piper KE, Steckelberg JM, Kavros SJ, Patel R (2010) In vitro activity of the Qoustic Wound Therapy System against planktonic and biofilm bacteria. Adv Skin Wound Care 23:316–320

    Article  PubMed  Google Scholar 

  59. Dong Y, Chen S, Wang Z, Peng N, Yu J (2013) Synergy of ultrasound microbubbles and vancomycin against Staphylococcus epidermidis biofilm. J Antimicrob Chemother 68:816–826

    Article  CAS  PubMed  Google Scholar 

  60. Nishikori T, Ochi M, Uchio Y, Maniwa S, Kataoka H, Kawasaki K, Katsube K, Kuriwaka M (2002) Effects of low-intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in Atelocollagen gel. J Biomed Mater Res 59:201–206

    Article  CAS  PubMed  Google Scholar 

  61. Nishikawa T, Yoshida A, Khanal A, Habu M, Yoshioka I, Toyoshima K, Takehara T, Nishihara T, Tachibana K, Tominaga K (2010) A study of the efficacy of ultrasonic waves in removing biofilms. Gerodontology 27:199–206

    Article  PubMed  Google Scholar 

  62. Escandon J, Vivas AC, Perez R, Kirsner R, Davis S (2012) A prospective pilot study of ultrasound therapy effectiveness in refractory venous leg ulcers. Int Wound J 9:570–578

    Article  PubMed  PubMed Central  Google Scholar 

  63. Maher SF, Halverson J, Misiewicz R, Reckling T, Smart O, Benton C, Schoenherr D (2014) Low-frequency ultrasound for patients with lower leg ulcers due to chronic venous insufficiency: a report of two cases. Ostomy Wound Manage 60:52–61

    PubMed  Google Scholar 

  64. Phillip PL, Yang Q, Schultz GS (2013) The effect of negative pressure wound therapy with periodic instillation using antimicrobial solutions on Pseudomonas aeruginosa biofilm on porcine skin explants. Int Wound J 10(1):48–55

    Article  Google Scholar 

  65. Gabriel A, Shores J, Bernstein B, de Leon J, Kamepalli R, Wolvos T, Baharestani MM, Gupta S (2009) A clinical review of infected wound treatment with Vacuum Assisted Closure (V.A.C.) therapy: experience and case series. Int Wound J 6(2):1–25

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ichioka S, Watanabe H, Sekiya N, Shibata M, Nakatsuka T (2008) A technique to visualize wound bed microcirculation and the acute effect of negative pressure. Wound Repair Regen 16:460–465

    Article  PubMed  Google Scholar 

  67. Besaer E, Kroukamp G, Wolfaardt GM, Boonzaaier L, Liss SN (2010) Metabolic differentiation in biofilms as indicated by carbon dioxide production rates. Appl Environ Microbiol 76:1189–1197

    Article  CAS  Google Scholar 

  68. Hurlow J, Cough K, Laforet K, Bolton L, Metcalf D, Bowler P (2015) Clinical biofilms: A challenging frontier in wound care advances. Wound Care Adv (New Rochelle) 5:295–301

    Article  Google Scholar 

  69. Attinger CH, Wolcott R (2012) Clinically addressing biofi lm in chronic wounds. Adv Wound Care (3):127–132

    Google Scholar 

  70. Ručigaj TP, Mihelic M (2015) Comparative effects of honey based and silver/charcoal based dressings on the healing of venous leg ulcers. Acta Med Croatica 69(1):67–72

    Google Scholar 

  71. Planinšek Ručigaj T (2005) Venous leg ulcers treatment with different alginate dressings (case study). In: Wundheilung Journal of Wound Healing 2, Sonderheft 2005; 9. Kongress der DGfW Europäischer Wundkongress/European wound conference, Stuttgart, 15–17

    Google Scholar 

  72. Košiček, M, TP Ručigaj. A comparative clinical trial: microbial colonisation of venous leg ulcers treated with hydrofibre dressing or with ointments. In: 2nd world union of wound healing societies meeting, Paris, 8–13 July 2004

    Google Scholar 

  73. TP Ručigaj, Somrak J Wound management with foam with PHMB. In: EWMA meeting, Geneva, Switzerland, 26–28 May 2010

    Google Scholar 

  74. TP Ručigaj, Kecelj N, Slana A Naše izkušnje s prvo slovensko oblogo za zdravljenje kroničnih ran pri inficiranih venskih golenjih razjedah: kontrolirana študija. In: Advanced treatment of chronic wounds and infected tissue/6th symposium on wounds, Portoroz, 12–13 May 2011

    Google Scholar 

  75. Planinšek Ručigaj T (2006) Treatment of venous leg ulcers with different alginate dressings: their effects on healing rate and pain: randomized clinical study: poster 113. V: Innovation, education, implementation: final programme, abstracts. Prague: European Wound Managemnet Association, 2006, str. 154

    Google Scholar 

  76. Rucigaj TP* (2005) [posterabstract] 159. Zeitschrift für Wundheilung, 2005, sonderheft 2, str. 276. [COBISS.SI-ID 22411832]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Planinšek Ručigaj M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ručigaj, T.P. (2017). Biofilm: Clinical Experience. In: Shiffman, M., Low, M. (eds) Biofilm, Pilonidal Cysts and Sinuses. Recent Clinical Techniques, Results, and Research in Wounds, vol 1. Springer, Cham. https://doi.org/10.1007/15695_2017_2

Download citation

  • DOI: https://doi.org/10.1007/15695_2017_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03076-6

  • Online ISBN: 978-3-030-03077-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics