Skip to main content

An Ancient DNA Perspective on Horse Evolution

  • Chapter
  • First Online:
Book cover Paleogenomics

Part of the book series: Population Genomics ((POGE))

Abstract

With the development of fast transportation and cavalry, the horse represents the domestic animal that most influenced human history. Yet, the evolutionary history of the horse was not limited to the last 5,500 years since it was first domesticated. It is rooted within a 55 million-year-long time span, where a large number of lineages radiated and became extinct. Together with zebras, hemiones, and donkeys, the horse belongs to the genus Equus, the only remaining equine lineage living in the planet. Even though the survival of exploitable ancient DNA molecules is at best limited to the last million years, the sequencing of short mitochondrial and nuclear DNA fragments, as well as of complete genome sequence from archaeological and paleontological material, has illuminated our understanding of the evolutionary history of the horse family. Such work has not only revisited the evolutionary tempo of Equus and the phylogenetic relationships within and outside the genus but also revealed how past climates and human activities have shaped the genetic makeup of the horse species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilli A, Olivieri A, Soares P, et al. Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication. Proc Natl Acad Sci U S A. 2012;109:2449–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alberdi MT, Prado JL. Review of the genus Hippidion Owen, 1869 (Mammalia: Perissofactyla) from the Pleistocene of South America. Zool J Linn Soc. 1993;108:1–22.

    Google Scholar 

  • Alberdi MT, Prado JL. Comments on Pleistocene horses from Tarija, Bolivia, and the validity of the genus Onohippidium (Mammalia: Equidae), by B.J. MacFadden. J Vert Paleontol. 1998;18:669–72.

    Google Scholar 

  • Alberdi MT, Prado JL, Prieto A. Considerations on the paper “morphological convergence in Hippidion and Equus (Amerhippus) South American equids elucidated by ancient DNA analysis”, by Ludovic Orlando, Véra Eisenmann, Frédéric Reynier, Paul Sondaar, Catherine Hänni. J Mol Evol. 2005;61:145–7.

    CAS  PubMed  Google Scholar 

  • Almathen F, Charruau P, Mohandesan E, et al. Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. Proc Natl Acad Sci U S A. 2016;113:6707–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson LS, Larhammar M, Memic F, et al. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature. 2012;488:642–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony DW. The horse, the wheel and language. Oxford: Princeton University Press; 2007.

    Google Scholar 

  • Anthony DW, Brown DE. The secondary products revolution, horse-riding, and mounted warfare. J World Prehist. 2011;24:131.

    Google Scholar 

  • Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beja-Pereira A, England PR, Ferrand N, et al. African origins of the domestic donkey. Science. 2004;304:1781.

    CAS  PubMed  Google Scholar 

  • Benecke N, von den Driesch A. Horse exploitation in the Kazakh steppes during the Eneolithic and Bronze Age. In: Levine M, Renfrew C, Boyle K, editors. Prehistoric steppe adaptation and the horse. Cambridge: McDonald Institute for Archaeological Research; 2003. p. 69–82.

    Google Scholar 

  • Bennett EA, Champlot S, Peters J, et al. Taming the late Quaternary phylogeography of the Eurasiatic wild ass through ancient and modern DNA. BioArXiv. 2017. https://doi.org/10.1101/090928.

  • Bertolini F, Scimone C, Geraci C, Schiavo G, Utzeri VJ, Chiofalo V, Fontanesi L. Next generation semiconductor based sequencing of the donkey (Equus asinus) genome provided comparative sequence data against the horse genome and a few millions of single nucleotide polymorphisms. PLoS One. 2015;10:e0131925.

    PubMed  PubMed Central  Google Scholar 

  • Bellone RR, Holl H, Setaluri V, et al. Evidence for a retroviral insertion in TRPM1 as the cause of congenital stationary night blindness and leopard complex spotting in the horse. PLoS One. 2013;8:e78280.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bower MA, McGivney BA, Campana MG, et al. The genetic origin and history of speed in the Thoroughbred racehorse. Nat Commun. 2012;3:643.

    PubMed  Google Scholar 

  • Boyd L, Houpt KA. Przewalski’s horse: the history and biology of an endangered species. Albany, New York: State University of New York Press; 1994. isbn:10-ISBN 0-791-41889-8; 13-ISBN 978-0-791-41889-5; OCLC 28256312.

    Google Scholar 

  • Braud M, Magee DA, Park SD, et al. Genome-wide microRNA binding site variation between extinct wild aurochs and modern cattle identifies candidate microRNA-regulated domestication genes. Front Genet. 2017;8:3.

    PubMed  PubMed Central  Google Scholar 

  • Brooks SA, Bailey E. Exon skipping in the KIT gene causes a Sabino spotting pattern in horses. Mamm Genome. 2005;16:893–902.

    CAS  PubMed  Google Scholar 

  • Brooks SA, Terry RB, Bailey E. A PCR-RFLP for KIT associated with tobiano spotting pattern in horses. Anim Genet. 2002;33:301–3.

    CAS  PubMed  Google Scholar 

  • Brunberg E, Andersson L, Cothran G, et al. A missense mutation in PMEL17 is associated with the silver coat color in the horse. BMC Genet. 2006;7:46.

    PubMed  PubMed Central  Google Scholar 

  • Cardoso JL, Vilstrup JT, Eisenman V, et al. First evidence of Equus asinus L. in the chalcolithic disputes the Phoenicians as the first to introduce donkeys into the Iberian Peninsula. J Archaeol Sci. 2013;40:4483–90.

    Google Scholar 

  • Carpenter ML, Buenrostro JD, Valdiosera C, et al. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am J Hum Genet. 2013;93:852–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdary BP. Equine genomics. Oxford: Wiley-Blackwell; 2013.

    Google Scholar 

  • Cieslak M, Pruvost M, Benecke N, et al. Origin and history of mitochondrial DNA lineages in domestic horses. PLoS One. 2010;5:e15311.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz-Dávalos DI, Llamas B, Gaunitz C, et al. Experimental conditions improving in-solution target enrichment for ancient DNA. Mol Ecol Resour. 2016. https://doi.org/10.1111/1755-0998.

  • Cucchi T, Mohaseb A, Debue K, et al. Detecting taxonomic and phylogenetic signals in equids cheek teeth with geometric morphometrics: towards new paleontological and archaeological proxies. R Soc Open Sci. 2017;4:160997. https://doi.org/10.1098/rsos.160997.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Da Fonseca RA, Smith BD, Wales N, et al. The origin and evolution of maize in the Southwestern United States. Nat Plants. 2015;1:14003.

    PubMed  Google Scholar 

  • Der Sarkissian C, Vilstrup JT, Schubert M, et al. Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids. Biol Lett. 2015a;11.

    Google Scholar 

  • Der Sarkissian C, Ermini L, Schubert M, et al. Evolutionary genomics and conservation of the endangered Przewalski’s horse. Curr Biol. 2015b;25:2577–83.

    Google Scholar 

  • Durand EY, Patterson N, Reich D, et al. Testing for ancient admixture between closely related populations. Mol Biol Evol. 2011;28:2239–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenman V. Folivores et tondeurs d’herbe: forme de la symphyse mandibulaire des Equidés et des Tapiridés (Perissodactyla, Mammalia). Geobios. 1998;31:113–23.

    Google Scholar 

  • Eisenman V. Pliocene and Pleistocene Equids: palaeontology versus molecular biology. Cour Forsch Inst Senckenberg. 2006;256:71–89.

    Google Scholar 

  • Eisenman V. Sussemionus, a new subgenus of Equus (Perissodactyla, Mammalia). C R Biol. 2010;333:235–40.

    Google Scholar 

  • Eisenmann V, Baylac M. Extant and fossil Equus (Mammalia, Perissodactyla) skulls: a morphometric definition of the subgenus Equus. Zool Scr. 2000;29:89–100.

    Google Scholar 

  • Elsner J, Deschler-Erb S, Stopp B, et al. Mitochondrial d-loop variation, coat colour and sex identification of Late Iron Age horses in Switzerland. J Archaeol Sci. 2016;6:386–96.

    Google Scholar 

  • Ermini L, Der Sarkissian C, Willerslev E, et al. Major transitions in human evolution revisited: a tribute to ancient DNA. J Hum Evol. 2015;79:4–20.

    PubMed  Google Scholar 

  • Frantz LA, Mullin VE, Pionnier-Capitan M, et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science. 2016;352:1228–31.

    CAS  PubMed  Google Scholar 

  • Franzen JL. The rise of the horse family. Baltimore, MD: Johns Hopkins University Press; 2010.

    Google Scholar 

  • Froese DG, Westgate JA, Reyes AV, et al. Ancient permafrost and a future, warmer Arctic. Science. 2008;321:1648.

    CAS  PubMed  Google Scholar 

  • Fu Q, Meyer M, Gao X, et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc Natl Acad Sci U S A. 2013;110:2223–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaunitz C, Fages A, Hanghøj K, et al. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science. 2018. https://doi.org/10.1126/science.aao3297.

    CAS  PubMed  Google Scholar 

  • Geigl EM, Grange T. Eurasian wild asses in time and space: morphological versus genetic diversity. Ann Anat. 2012;194:88–102.

    CAS  PubMed  Google Scholar 

  • Gallego Llorente M, Jones ER, Eriksson A, et al. Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science. 2015;350:820–2.

    CAS  PubMed  Google Scholar 

  • Gokhman D, Meshorer E, Carmel L. Epigenetics: it’s getting old. Past meets future in Paleoepigenetics. Trends Ecol Evol. 2016;31:290–300.

    PubMed  Google Scholar 

  • Green RE, Krause J, Briggs AW, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groves CP, Willoughby DP. Studies on the taxonomy and phylogeny of the genus Equus-1. Subgeneric classification of the recent species. Mammalia. 1981;45:321–54.

    Google Scholar 

  • Guthrie RD. Rapid body size decline in Alaskan Pleistocene horses before extinction. Nature. 2003;426:169–71.

    PubMed  Google Scholar 

  • Guthrie RD. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature. 2006;441:207–9.

    CAS  PubMed  Google Scholar 

  • Haak W, Lazaridis I, Patterson N, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haile J, Froese DG, Macphee RD, et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc Natl Acad Sci U S A. 2009;106:22352–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–13.

    CAS  PubMed  Google Scholar 

  • Higuchi R, Bowman B, Freiberger M, et al. DNA sequences from the quagga, an extinct member of the horse family. Nature. 1984;312:282–4.

    CAS  PubMed  Google Scholar 

  • Hill EW, Gu J, Eivers SS, et al. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in Thoroughbred horses. PLoS One. 2010;5:e8645.

    PubMed  PubMed Central  Google Scholar 

  • Hofreiter M, Paijmans JL, Goodchild H, et al. The future of ancient DNA: technical advances and conceptual shifts. BioEssays. 2015;37:284–93.

    PubMed  Google Scholar 

  • Huang J, Zhao Y, Bai D, et al. Donkey genome and insight into the imprinting of fast karyotype evolution. Sci Rep. 2015;5:14106.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imsland F, McGowan K, Rubin CJ, et al. Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses. Nat Genet. 2016;48:152–8.

    CAS  PubMed  Google Scholar 

  • Jansen T, Forster P, Levine MA, et al. Mitochondrial DNA and the origins of the domestic horse. Proc Natl Acad Sci U S A. 2002;99:10905–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone C (2004) A biometric study of equids in the Roman world. PhD. Department of Archaeology, University of York.

    Google Scholar 

  • Jónsson H, Schubert M, Seguin-Orlando A, et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc Natl Acad Sci U S A. 2014;111:18655–60.

    PubMed  PubMed Central  Google Scholar 

  • Kelekna P. The horse in human history. Cambridge: Cambridge University Press; 2009.

    Google Scholar 

  • Keyser C, Hollard C, Gonzalez A, et al. The ancient Yakuts: a population genetic enigma. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20130385.

    Google Scholar 

  • Kimura B, Marshall FB, Chen S, et al. Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication. Proc Biol Sci. 2011;278:50–7.

    PubMed  Google Scholar 

  • Langdon J. Horses, oxen and technological innovation: the use of draught animals in English farming from 1066-1500. Cambridge: Cambridge University Press; 2006.

    Google Scholar 

  • Larson G, Fuller DQ. The evolution of animal domestication. Annu Rev Ecol Evol Syst. 2014;45:115–36.

    Google Scholar 

  • Lawling AM, Polly PD. Geometric morphometrics: recent applications to the study of evolution and development. J Zool. 2010;280:1–7.

    Google Scholar 

  • Lindgren G, Backström N, Swinburne J, et al. Limited number of patrilines in horse domestication. Nat Genet. 2004;36:335–6.

    CAS  PubMed  Google Scholar 

  • Leonard JA, Rohland N, Glaberman S, et al. A rapid loss of stripes: the evolutionary history of the extinct quagga. Biol Lett. 2005;1:291–5.

    PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Der Sarkissian C, Ermini L, et al. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc Natl Acad Sci U S A. 2015;112:E6889–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Fages A, Gaunitz C, Leonardi M, Wagner S, Khan N, Hanghøj K, Alquraishi SA, Alfarhan AH, Al-Rasheid KA, Der Sarkissian C, Schubert M, Orlando L. The evolutionary origin and genetic makeup of domestic horses. Genetics. 2016;204:423–34.

    PubMed  PubMed Central  Google Scholar 

  • Librado P, Gamba C, Gaunitz C, et al. Ancient genomic changes associated with domestication of the horse. Science. 2017;356:442–5.

    CAS  PubMed  Google Scholar 

  • Lippold S, Matzke NJ, Reissmann M, et al. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication. BMC Evol Biol. 2011a;11:328.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lippold S, Knapp M, Kuznetsova T, et al. Discovery of lost diversity of paternal horse lineages using ancient DNA. Nat Commun. 2011b;2:450.

    PubMed  Google Scholar 

  • Lira J, Linderholm A, Olaria C, et al. Ancient DNA reveals traces of Iberian Neolithic and Bronze Age lineages in modern Iberian horses. Mol Ecol. 2010;19:64–78.

    CAS  PubMed  Google Scholar 

  • Llamas B, Willerslev E, Orlando L. Human evolution: a tale from ancient genomes. Philos Trans R Soc Lond Ser B Biol Sci. 2017;372.

    Google Scholar 

  • Lorenzen ED, Nogués-Bravo D, Orlando L, et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature. 2011;479:359–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig A, Pruvost M, Reissmann M, et al. Coat color variation at the beginning of horse domestication. Science. 2009;324:485.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig A, Reissmann M, Benecke N, et al. Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20130386.

    Google Scholar 

  • MacFadden BJ. Pleistocene horses from Tarija, Bolivia, and the validity of the genus Onohippidium (Mammalia: Equidae). J Vert Paleontol. 1997;17:199–218.

    Google Scholar 

  • MacFadden BJ, Carranza-Castaneda O. Cranium of Dinohippus mexicanus (Mammalia Equidae) from the early Pliocene (latest Hemphillian) of central Mexico and the origin of Equus. Bull Florida Mus Nat Hist. 2002;43:163–85.

    Google Scholar 

  • MacHugh DE, Larson G, Orlando L, et al. Taming the past: ancient DNA and the study of animal domestication. Annu Rev Anim Biosci. 2017;5:329–51.

    CAS  PubMed  Google Scholar 

  • Mailund T, Halager AE, Westergaard M, et al. A new isolation with migration model along complete genomes infers very different divergence processes among closely related great ape species. PLoS Genet. 2012;8:e1003125.

    PubMed  PubMed Central  Google Scholar 

  • Makvandi-Nejad S, Hoffman GE, Allen JJ, et al. Four loci explain 83% of size variation in the horse. PLoS One. 2012;7:e39929.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maricic T, Whitten M, Pääbo S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One. 2010;5:e14004.

    PubMed  PubMed Central  Google Scholar 

  • Mathieson I, Lazaridis I, Rohland N, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCue ME, Valberg SJ, Miller MB, et al. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics. 2008;91:458–66.

    CAS  PubMed  Google Scholar 

  • McCue ME, Bannasch DL, Petersen JL, et al. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genet. 2012;8:e1002451.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGivney BA, McGettigan PA, Browne JA, et al. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics. 2010;11:398.

    PubMed  PubMed Central  Google Scholar 

  • McKenzie VJ, Song SJ, Delsuc F, et al. The effects of captivity on the mammalian gut microbiome. Integr Comp Biol. 2017;57:690–704.

    PubMed  PubMed Central  Google Scholar 

  • Metcalf JL, Song SJ, Morton JT, et al. Evaluating the impact of domestication and captivity on the horse gut microbiome. Sci Rep. 2017;7:15497.

    PubMed  PubMed Central  Google Scholar 

  • Metzger J, Philipp U, Lopes MS, et al. Analysis of copy number variants by three detection algorithms and their association with body size in horses. BMC Genomics. 2013;14:487.

    PubMed  PubMed Central  Google Scholar 

  • Meyer M, Kircher M, Gansauge MT, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338:222–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller W, Drautz DI, Ratan A, et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature. 2008;456:387–90.

    CAS  PubMed  Google Scholar 

  • Mohandesan E, Speller CF, Peters J, et al. Combined hybridization capture and shotgun sequencing for ancient DNA analysis of extinct wild and domestic dromedary camel. Mol Ecol Resour. 2017;17:300–13.

    CAS  PubMed  Google Scholar 

  • Nagasawa M, Mitsui S, En S, et al. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science. 2015;348:333–6.

    CAS  PubMed  Google Scholar 

  • Orlando L. Equids. Curr Biol. 2015;25:R973–8.

    CAS  PubMed  Google Scholar 

  • Orlando L, Eisenmann V, Reynier F, et al. Morphological convergence in Hippidion and Equus (Amerhippus) South American equids elucidated by ancient DNA analysis. J Mol Evol. 2003;57(suppl 1):S29–40.

    CAS  PubMed  Google Scholar 

  • Orlando L, Mashkour M, Burke A, et al. Geographic distribution of an extinct equid (Equus hydruntinus: Mammalia, Equidae) revealed by morphological and genetical analyses of fossils. Mol Ecol. 2006;15:2083–93.

    CAS  PubMed  Google Scholar 

  • Orlando L, Metcalf JL, Alberdi MT, et al. Revising the recent evolutionary history of equids using ancient DNA. Proc Natl Acad Sci U S A. 2009;106:21754–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlando L, Ginolhac A, Raghavan M, et al. True single-molecule DNA sequencing of a pleistocene horse bone. Genome Res. 2011;21:1705–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlando L, Ginolhac A, Zhang G, et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499:74–8.

    CAS  PubMed  Google Scholar 

  • Orlando L, Gilbert MT, Willerslev E. Reconstructing ancient genomes and epigenomes. Nat Rev Genet. 2015;16:395–408.

    CAS  PubMed  Google Scholar 

  • Outram AK, Stear NA, Bendrey R, et al. The earliest horse harnessing and milking. Science. 2009;323:1332–5.

    CAS  PubMed  Google Scholar 

  • Park SD, Magee DA, McGettigan PA, et al. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 2015;16:234.

    PubMed  PubMed Central  Google Scholar 

  • Patterson N, Moorjani P, Luo Y, et al. Ancient admixture in human history. Genetics. 2012;192:1065–93.

    PubMed  PubMed Central  Google Scholar 

  • Petersen JL, Mickelson JR, Rendahl AK, et al. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 2013;9:e1003211.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen MW, Overballe-Petersen S, Ermini L, et al. Ancient and modern environmental DNA. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20130383.

    Google Scholar 

  • Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8:e1002967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Promerová M, Andersson LS, Juras R, et al. Worldwide frequency distribution of the ‘Gait keeper’ mutation in the DMRT3 gene. Anim Genet. 2014;45:274–82.

    PubMed  Google Scholar 

  • Pruvost M, Bellone R, Benecke N, et al. Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art. Proc Natl Acad Sci U S A. 2011;108:18626–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Madrigal J, Smith BD, Moreno-Mayar JV, et al. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol. 2016;26:3195–201.

    CAS  PubMed  Google Scholar 

  • Rasmussen M, Li Y, Lindgreen S, et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature. 2010;463:757–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen M, Guo X, Wang Y, et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science. 2011;334:94–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen M, Anzick SL, Waters MR, et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature. 2014;506:225–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reich D, Green RE, Kircher M, et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010;468:1053–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reissmann M, Bierwolf J, Brockmann GA. Two SNPs in the SILV gene are associated with silver coat colour in ponies. Anim Genet. 2007;38:1–6.

    CAS  PubMed  Google Scholar 

  • Renaud G, Petersen B, Seguin-Orlando A, Bertelsen MF, Waller A, Newton R, Paillot R, Bryant N, Vaudin M, Librado P, Orlando L. Improved de novo genomic assembly for the domestic donkey. Sci Adv. 2018;4:eaaq0392. https://doi.org/10.1126/sciadv.aaq0392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero JL, Hill EW. Skeletal muscle adaptations and muscle genomics of performance horses. Vet J. 2016;209:5–13.

    PubMed  Google Scholar 

  • Rossel S, Marshall F, Peters J, et al. Domestication of the donkey: timing, processes, and indicators. Proc Natl Acad Sci U S A. 2008;105:3715–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheu A (2017) Neolithic animal domestication as seen from ancient DNA. Quat Int. https://doi.org/10.1016/j.quaint.2017.02.009.

    Google Scholar 

  • Schubert M, Jónsson H, Chang D, et al. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci U S A. 2014;111:E5661–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert M, Mashkour M, Gaunitz C, et al. Fast, accurate and sensitive pipeline to genetically identify equine F1-hybrids in archaeological assemblages. J Archaeol Sci. 2017;78:147–57.

    Google Scholar 

  • Steiner CC, Mitelberg A, Tursi R, et al. Molecular phylogeny of extant equids and effects of ancestral polymorphism in resolving species-level phylogenies. Mol Phylogenet Evol. 2012;65:573–81.

    PubMed  Google Scholar 

  • Signer-Hasler H, Flury C, Haase B, et al. A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS One. 2012;7:e37282.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skoglund P, Ersmark E, Palkopoulou E. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr Biol. 2015;25:1515–9.

    CAS  PubMed  Google Scholar 

  • Sommer RS, Benecke L, Lougas O, et al. Holocene survival of the wild horse in Europe: a matter of open landscape? J Quat Sci. 2011;26:1099–417.

    Google Scholar 

  • Stoneking M, Krause J. Learning about human population history from ancient and modern genomes. Nat Rev Genet. 2011;12:603–14.

    CAS  PubMed  Google Scholar 

  • Stuart AJ. Late quaternary megafaunal extinctions on the continents. Geol J. 2015;50:338–63.

    Google Scholar 

  • Tozaki T, Miyake T, Kakoi H, et al. A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Anim Genet. 2010;41(suppl 2):28–35.

    CAS  PubMed  Google Scholar 

  • Vilà C, Leonard JA, Gotherstrom A, et al. Widespread origins of domestic horse lineages. Science. 2001;291:474–7.

    PubMed  Google Scholar 

  • Vigne FD, Helmer D, Peters J. First steps of animal domestication: new archaeozoological approaches. Oxford: Oxbow Books; 2005.

    Google Scholar 

  • Vilstrup JT, Seguin-Orlando A, Stiller M, et al. Mitochondrial phylogenomics of modern and ancient equids. PLoS One. 2013;8:e55950.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wade CM, Giulotto E, Sigurdsson S, et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science. 2009;326:865–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wakefield S, Knowles J, Zimmermann W, et al. Status and action plan for the Przewalski’s horse (Equus ferus przewalskii). In: Moehlman P, editor. Equids: zebras, asses and horses, vol. 2002. Cambridge: IUNC/SSC Equid Specialist Group, IUCN Publications Services Unit; 2012. p. 82–92.

    Google Scholar 

  • Warmuth V, Eriksson A, Bower MA, et al. European domestic horses originated in two holocene refugia. PLoS One. 2011;6:e18194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warmuth V, Eriksson A, Bower MA, et al. Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proc Natl Acad Sci U S A. 2012;109:8202–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warinner C, Speller C, Collins M. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20130376.

    Google Scholar 

  • Weinstock J, Willerslev E, Sher A, et al. Evolution, systematics, and phylogeography of pleistocene horses in the new world: a molecular perspective. PLoS Biol. 2005;3:e241.

    PubMed  PubMed Central  Google Scholar 

  • Wilkins AS, Wrangham RW, Fitch WT. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics. 2014;197:795–808.

    PubMed  PubMed Central  Google Scholar 

  • Willerslev E, Davison J, Moora M, et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature. 2014;506:47–51.

    CAS  PubMed  Google Scholar 

  • Wallner B, Vogl C, Shukla P, et al. Identification of genetic variation on the horse y chromosome and the tracing of male founder lineages in modern breeds. PLoS One. 2013;8:e60015.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wutke S, Benecke N, Sandoval-Castellanos E, et al. Spotted phenotypes in horses lost attractiveness in the Middle Ages. Sci Rep. 2016a;6:38548.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wutke S, Andersson L, Benecke N, et al. The origin of ambling horses. Curr Biol. 2016b;26:R697–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Orlando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orlando, L. (2018). An Ancient DNA Perspective on Horse Evolution. In: Lindqvist, C., Rajora, O. (eds) Paleogenomics. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_23

Download citation

Publish with us

Policies and ethics