Skip to main content

Genome-Wide Association Studies and Heritability Estimation in the Functional Genomics Era

  • Chapter
  • First Online:
Population Genomics

Part of the book series: Population Genomics ((POGE))

Abstract

Genome-wide association studies (GWAS) are designed to detect the statistical association between genomic markers and phenotypic data in order to identify loci that control complex traits and more recently to quantify the relative amount of trait variance that arises from genetic sources. Moreover, many genomic resources have been generated and analytical tools developed to bring together information linking GWAS results to causal variants. This book chapter is an incredible effort to bring together information about current aspects of genome-wide studies and the concept of heritability. In the first section of this book chapter, we discuss the most critical concepts and experimental considerations in order to follow GWAS. In the later sections, we explore how researchers are trying to answer the question of whether using functional genomic data can improve the power of GWAS in complex phenotypes and if so far has led us to important biological insights. We review the core concept of heritability, its practical applications, and the classical (pre-genomics) methods for measurement, which largely remain relevant. Finally, we outline the genomic resources available for GWA studies. Also, based on what is available for humans, we identify what are the most critical resources that need to be developed for other species by contrasting the human genomic resources with resources being developed in plant and animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi H. Bonferroni and Sidak corrections for multiple comparisons. In: Salkind NJ, editor. Encyclopedia of measurement and statistics. Thousand Oaks: Sage; 2007. p. 103–7.

    Google Scholar 

  • Adey A, Morrison HG, Asan, Xun X, Kitzman JO, Turner EH, et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 2010;11:R119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.

    Article  CAS  PubMed  Google Scholar 

  • Al-Tassan NA, Whiffin N, Hosking FJ, Palles C, Farrington SM, Dobbins SE, et al. A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Sci Rep. 2015;5:10442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  • Amin N, van Duijn CM, Aulchenko YS. A genomic background based method for association analysis in related individuals. PLoS One. 2007;2:e1274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amos CI. Successful design and conduct of genome-wide association studies. Hum Mol Genet. 2007;16.

    Article  CAS  PubMed  Google Scholar 

  • Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aulchenko YS, De Koning DJ, Haley C. Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics. 2007a;177:577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007b;23:1294–6.

    Article  CAS  PubMed  Google Scholar 

  • Ay F, Noble WS, Dekker J, Rippe K, Dekker M, Kleckner N, et al. Analysis methods for studying the 3D architecture of the genome. Genome Biol. 2015;16:183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bac-Molenaar JA, Vreugdenhil D, Granier C, Keurentjes JJB. Genome-wide association mapping of growth dynamics detects time-specific and general quantitative trait loci. J Exp Bot. 2015;66:5567–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–37.

    Article  CAS  PubMed  Google Scholar 

  • Bax L, Yu L-M, Ikeda N, Moons KG. A systematic comparison of software dedicated to meta-analysis of causal studies. BMC Med Res Methodol. 2007;7:40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker K, Siegert S, Toliat MR, Du J, Casper R, Dolmans GH, et al. Meta-analysis of genome-wide association studies and network analysis-based integration with gene expression data identify new suggestive loci and unravel a Wnt-centric network associated with Dupuytren’s disease. PLoS One. 2016;11:e0158101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belton J-M, McCord RP, Gibcus JH, Naumova N, Zhan Y. Hi–C: a comprehensive technique to capture the conformation of genomes. Methods. 2012;58:268–76.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.

    Google Scholar 

  • van Binsbergen R, Bink MC, Calus MP, van Eeuwijk FA, Hayes BJ, Hulsegge I, et al. Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle. Genet Sel Evol. 2014;46:41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.

    Article  CAS  PubMed  Google Scholar 

  • Birney E, Smith GD, Greally JM. Epigenome-wide association studies and the interpretation of disease -omics (GS Barsh, Ed). PLoS Genet. 2016;12:e1006105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Nucleosomes unfold completely at a transcriptionally active promoter. Mol Cell. 2003;11:1587–98.

    Article  CAS  PubMed  Google Scholar 

  • Bonferroni C. Il calcolo delle assicurazioni su gruppi di teste. In: In Studi in Onore del Professore Salvatore Ortu Carboni, Bardi. 1935. pp 13–60.

    Google Scholar 

  • Bønnelykke K, Matheson MC, Pers TH, Granell R, Strachan DP, Alves AC, et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat Genet. 2013;45:902–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–5.

    Article  CAS  PubMed  Google Scholar 

  • Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, et al. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci U S A. 2011;108:E864–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucksch A, Burridge J, York LM, Das A, Nord E, Weitz JS, et al. Image-based high-throughput field phenotyping of crop roots. Plant Physiol. 2014;166:470–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukowski R, Guo X, Lu Y, et al. Construction of the third generation Zea mays haplotype map. Gigascience. 2017. https://doi.org/10.1093/gigascience/gix134 [Epub ahead of print].

  • Bulik-Sullivan B, Selitsky S, Sethupathy P. Prioritization of genetic variants in the microrna regulome as functional candidates in genome-wide association studies. Hum Mutat. 2013;34:1049–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulmer MG. The effect of selection on genetic variability. Am Nat. 1971;105:201–11.

    Article  Google Scholar 

  • de los Campos G, Sorensen D, Gianola D. Genomic heritability: what is it? PLoS Genet. 2015;11:e1005048.

    Article  PubMed Central  CAS  Google Scholar 

  • Chen GB. Estimating heritability of complex traits from genome-wide association studies using IBS-based Haseman-Elston regression. Front Genet. 2014;5:1–14.

    Google Scholar 

  • Chen C-Y, Chang I-S, Hsiung CA, Wasserman WW. On the identification of potential regulatory variants within genome wide association candidate SNP sets. BMC Med Genomics. 2014;7:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet. 2012;44:803–7.

    Article  CAS  PubMed  Google Scholar 

  • Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007;61:24R–9R.

    Article  CAS  PubMed  Google Scholar 

  • Clark RT, Famoso AN, Zhao K, Shaff JE, Craft EJ, Bustamante CD, et al. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 2013;36:454–66.

    Article  CAS  PubMed  Google Scholar 

  • Claussnitzer M, Dankel SN, Kim K-H, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium 1000 Genomes Project, others, Africa W, Consortium T 1000 genomes project, Durbin RM, Altshuler DL, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.

    Article  CAS  Google Scholar 

  • Cooper GM, Stone EA, Asimenos G, NISC Comparative Sequencing Program, Green ED, Batzoglou S, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 2005;15:901–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 2006;16:123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum RF, et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet. 2014;46:858–65.

    Article  CAS  PubMed  Google Scholar 

  • Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++ (WW Wasserman, Ed). PLoS Comput Biol. 2010;6:e1001025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J. Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res (Camb). 2010;92:295–308.

    Article  CAS  Google Scholar 

  • De Mita S, Ronfort J, McKhann HI, Poncet C, El Malki R, Bataillon T. Investigation of the demographic and selective forces shaping the nucleotide diversity of genes involved in nod factor signaling in Medicago truncatula. Genetics. 2007;177:2123–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dingwall C, Lomonossoff GP, Laskey RA. High sequence specificity of micrococcal nuclease. Nucleic Acids Res. 1981;9:2659–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dongen J, Slagboom PE, Draisma HHM, Martin NG, Boomsma DI. The continuing value of twin studies in the omics era. Nat Publ Gr. 2012;13:640–53.

    Google Scholar 

  • Eberle MA, Ng PC, Kuhn K, Zhou L, Peiffer DA, Galver L, et al. Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet. 2007;3:1827–37.

    Article  CAS  PubMed  Google Scholar 

  • Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsik CG, Tellam RL, Worley KC. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009;324:522–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  CAS  Google Scholar 

  • Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473:43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evangelou E, Ioannidis JPA. Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet. 2013;14:379–89.

    Article  CAS  PubMed  Google Scholar 

  • Ewens WJ, Spielman RS. The transmission/disequilibrium test: history, subdivision, and admixture. Am J Hum Genet. 1995;57:455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2016;44:D481–7.

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren N, Gehan MA, Baxter I. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol. 2015;24:93–9.

    Article  PubMed  Google Scholar 

  • Falconer D, Mackay T. Introduction to quantitative genetics. 4th ed. Harlow, Essex: Longmans Green; 1996.

    Google Scholar 

  • Farnham PJ. Insights from genomic profiling of transcription factors. Nat Rev Genet. 2009;10:605–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, et al. The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. Nucleic Acids Res. 2015;43:D1036–41.

    Article  CAS  PubMed  Google Scholar 

  • Finotello F, Di Camillo B. Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomics. 2015;14:130–42.

    Article  CAS  PubMed  Google Scholar 

  • Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015;47:1228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RA. XV.—the correlation between relatives on the supposition of mendelian inheritance. Trans R Soc Edinb. 1918;52:399–433.

    Article  Google Scholar 

  • Fisher RA. Statistical methods for research workers. Can Med Assoc J. 1932;27:460.

    Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES 4th. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol. 2003;54:357–74.

    Article  CAS  PubMed  Google Scholar 

  • Franke A, McGovern DPB, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furey TS. ChIP–seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat Rev Genet. 2012;13:840–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galton F. Regression toward mediocrity in hereditary stature. J Anthropol Inst Gt Britain Irel. 1886;15:246–63.

    Article  Google Scholar 

  • Garner C, Slatkin M. On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci. Genet Epidemiol. 2003;24:57–67.

    Article  PubMed  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S. Genetic structure and diversity in Oryza sativa L. Genetics. 2005;169:1631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.

    Article  CAS  Google Scholar 

  • Gerasimova A, Chavez L, Li B, Seumois G, Greenbaum J, Rao A, et al. Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data (Y-H Hsu, Ed). PLoS One. 2013;8:e54359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianola D, Rosa GJM. One hundred years of statistical developments in animal breeding. Annu Rev Anim Biosci. 2015;3:19–56.

    Article  PubMed  Google Scholar 

  • Gianola D, van Kaam JBCHM. Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics. 2008;178:2289–303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, Eversole KA, Gill CA, et al. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science. 2009;324:528–32.

    Article  CAS  PubMed  Google Scholar 

  • Gibson G. Hints of hidden heritability in GWAS. Nat Genet. 2010;42:558–60.

    Article  CAS  PubMed  Google Scholar 

  • Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2012;13:135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilman SR, Iossifov I, Levy D, Ronemus M, Wigler M, Vitkup D. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron. 2011;70:898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giresi PG, Lieb JD. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods. 2009;48:233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 2007;17:877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science. 2002;298:2345–9.

    Article  CAS  PubMed  Google Scholar 

  • Goddard M. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica. 2009;136:245–57.

    Article  PubMed  Google Scholar 

  • Golan D, Lander ES, Rosset S. Measuring missing heritability: inferring the contribution of common variants. Proc Natl Acad Sci. 2014;111:E5272–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.

    Article  CAS  PubMed  Google Scholar 

  • Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, et al. A first-generation haplotype map of maize. Science. 2009;326:1115–7.

    Article  CAS  PubMed  Google Scholar 

  • Graur D, Zheng Y, Price N, Azevedo RBR, Zufall RA, Elhaik E. On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol. 2013;5:578–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green JM, Appel H, Rehrig EM, Harnsomburana J, Chang J-F, Balint-Kurti P, et al. PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery. Plant Methods. 2012;8:45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grob S, Schmid MW, Grossniklaus U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell. 2014;55:678–93.

    Article  CAS  PubMed  Google Scholar 

  • Groenen MAM, Amaral A, Megens HJ, et al. The porcine HapMap project: genome-wide assessment of nucleotide diversity, haplotype diversity and footprints of selection in the pig. In: Abstract from plant and animal genomes XVIII conference. San Diego; 2010.

    Google Scholar 

  • Grubert F, Zaugg JB, Kasowski M, Ursu O, Spacek DV, Martin AR, et al. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell. 2015;162:1051–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P, et al. Many sequence variants affecting diversity of adult human height. Nat Genet. 2008;40:609–15.

    Article  CAS  PubMed  Google Scholar 

  • Gusev A, Bhatia G, Zaitlen N, Vilhjalmsson BJ, Diogo D, Stahl EA, et al. Quantifying missing heritability at known GWAS loci. PLoS Genet. 2013;9:10–4.

    Article  CAS  Google Scholar 

  • Gusev A, Lee SH, Trynka G, Finucane H, Vilhjálmsson BJ, Xu H, et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am J Hum Genet. 2014;95:535–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Gao S, Muegge K, Zhang W, Zhou B. Advanced applications of RNA sequencing and challenges. Bioinform Biol Insights. 2015;9:29–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hangauer MJ, Vaughn IW, McManus MT, Hindorff L, Sethupathy P, Junkins H, et al. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs (JL Rinn, Ed). PLoS Genet. 2013;9:e1003569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • HapMap CTI. The International HapMap Project. Nature. 2003;426:789–96.

    Article  CAS  Google Scholar 

  • Harrison MJ. Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol. 2005;59:19–42.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Czauderna T, Hoffmann R, Stein N, Schreiber F. HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinformatics. 2011;12:148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haseman JK, Elston RC. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972;2:3–19.

    Article  CAS  PubMed  Google Scholar 

  • Hayes B. Overview of statistical methods for genome-wide association studies (GWAS). Methods Mol Biol. 2013;1019:149–69.

    Article  PubMed  Google Scholar 

  • Hayes B, Goddard ME. The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol. 2001;33:209–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes BJ, Visscher PM, Goddard ME. Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res (Camb). 2009;91:47–60.

    Article  CAS  Google Scholar 

  • Heath KD, Tiffin P. Context dependence in the coevolution of plant and rhizobial mutualists. Proc Biol Sci. 2007;274:1905–12.

    PubMed  PubMed Central  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L. Genomic selection for crop improvement. Crop Sci. 2009;49:1.

    Article  CAS  Google Scholar 

  • Henderson CR. Estimation of variance and covariance components. Biometrics. 1953;9:226–52.

    Article  Google Scholar 

  • Henderson C. Best linear unbiased estimation and prediction under a selection model. Biometrics. 1975;31:423–47.

    Article  CAS  PubMed  Google Scholar 

  • Henderson CR. A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics. 1976;32:69–83.

    Article  Google Scholar 

  • Herwig R, Hardt C, Lienhard M, Kamburov A. Analyzing and interpreting genome data at the network level with ConsensusPathDB. Nat Protoc. 2016;11:1889–907.

    Article  CAS  PubMed  Google Scholar 

  • Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theor Appl Genet. 1968;38:226–31.

    Article  CAS  PubMed  Google Scholar 

  • Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT. Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev. 2003;22:9–112.

    Google Scholar 

  • Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat Rev Genet. 2010;11:855–66.

    Article  CAS  PubMed  Google Scholar 

  • Huber CD, Nordborg M, Hermisson J, Hellmann I. Keeping it local: evidence for positive selection in Swedish Arabidopsis thaliana. Mol Biol Evol. 2014;31:3026–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ioannidis JP, Patsopoulos NA, Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS One. 2007;2:e841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet. 2001;29:217–22.

    Article  CAS  PubMed  Google Scholar 

  • Jeffries MA, Sawalha AH. Autoimmune disease in the epigenetic era: how has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert Rev Clin Immunol. 2015;11:45–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics. 2011;27:95–102.

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Pugh BF. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet. 2009;10:161–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin L, Zuo X-Y, Su W-Y, Zhao X-L, Yuan M-Q, Han L-Z, et al. Pathway-based analysis tools for complex diseases: a review. Genomics Proteomics Bioinformatics. 2014;12:210–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • John S, Sabo PJ, Thurman RE, Sung M-H, Biddie SC, Johnson TA, et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet. 2011;43:264–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan KW, Wang S, Lun Y, Gardiner L-J, MacLachlan R, Hucl P, et al. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol. 2015;16:48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, et al. Efficient control of population structure in model organism association mapping. Genetics. 2008;178:1709–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-Y, Freimer NB, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010;42:348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Sakiroglu M, Krom N, Stanton-Geddes J, Wang M, Lee YC, et al. Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula. Plant Cell Environ. 2015;38:1997–2011.

    Article  CAS  PubMed  Google Scholar 

  • Karaletsos T, Stegle O, Dreyer C, Winn J, Borgwardt KM. ShapePheno: unsupervised extraction of shape phenotypes from biological image collections. Bioinformatics. 2012;28:1001–8.

    Article  CAS  PubMed  Google Scholar 

  • Karczewski KJ, Dudley JT, Kukurba KR, Chen R, Butte AJ, Montgomery SB, et al. Systematic functional regulatory assessment of disease-associated variants. Proc Natl Acad Sci U S A. 2013;110:9607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keene MA, Corces V, Lowenhaupt K, Elgin SC. DNase I hypersensitive sites in Drosophila chromatin occur at the 5′ ends of regions of transcription. Proc Natl Acad Sci U S A. 1981;78:143–46.

    Article  CAS  Google Scholar 

  • Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, et al. Defining functional DNA elements in the human genome. Proc Natl Acad Sci U S A. 2014;111:6131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemper KE, Reich CM, Bowman PJ, Vander Jagt CJ, Chamberlain AJ, Mason BA, et al. Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions. Genet Sel Evol. 2015;47:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465:182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte A, Vilhjálmsson BJ, Segura V, Platt A, Long Q, Nordborg M. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nat Genet. 2012;44:1066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruuk LE. Estimating genetic parameters in natural populations using the “animal model”. Philos Trans R Soc Lond B Biol Sci. 2004;359:873–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ku CS, Naidoo N, Wu M, Soong R. Studying the epigenome using next generation sequencing. J Med Genet. 2011;48:721–30.

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994;265:2037–48.

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  • Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467:832–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le TBK, Imakaev MV, Mirny LA, Laub MT. High-resolution mapping of the spatial organization of a bacterial chromosome. Science. 2013;342:731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C-K, Shibata Y, Rao B, Strahl BD, Lieb JD. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet. 2004;36:900–5.

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011;88:294–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SH, Yang J, Chen GB, Ripke S, Stahl EA, Hultman CM, et al. Estimation of SNP heritability from dense genotype data. Am J Hum Genet. 2013;93:1151–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiserson MDM, Eldridge JV, Ramachandran S, Raphael BJ. Network analysis of GWAS data. Curr Opin Genet Dev. 2013;23:602–10.

    Article  CAS  PubMed  Google Scholar 

  • Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, Sanna S, et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet. 2008;40:584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewontin RC. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics. 1964;49:49–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Ghosh D. Meta-analysis based on weighted ordered P-values for genomic data with heterogeneity. BMC Bioinformatics. 2014;15:226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Haseneyer G, Schön C, Ankerst D, Korzun V, Wilde P, et al. High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC Plant Biol. 2011;11:1–14.

    Article  CAS  Google Scholar 

  • Li H, Chen H, Liu F, Ren C, Wang S, Bo X, et al. Functional annotation of HOT regions in the human genome: implications for human disease and cancer. Sci Rep. 2015a;5:11633.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Lyu X, Hou C, Takenaka N, Nguyen HQ, Ong C-T, et al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Mol Cell. 2015b;58:216–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ligthart S, Marzi C, Aslibekyan S, Mendelson MM, Conneely KN, Tanaka T, et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 2016;17:255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin X, Barton S, Holbrook JD. How to make DNA methylome wide association studies more powerful. Epigenomics. 2016;8:1117–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28:2397–9.

    Article  CAS  PubMed  Google Scholar 

  • Lipka AE, Kandianis CB, Hudson ME, Yu J, Drnevich J, Bradbury PJ, et al. From association to prediction: statistical methods for the dissection and selection of complex traits in plants. Curr Opin Plant Biol. 2015;24:110–8.

    Article  PubMed  Google Scholar 

  • Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. FaST linear mixed models for genome-wide association studies. Nat Methods. 2011;8:833–5.

    Article  CAS  PubMed  Google Scholar 

  • Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet. 2010;87:139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Wang C, Wang G, Becker C, Zaidem M, Weigel D. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res. 2016;26:1057–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, et al. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat Genet. 2013;45:884–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet. 2013;9:e1003608.

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer Associates; 1998.

    Google Scholar 

  • Mackay TFC. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet. 2014;15:22–33.

    Article  CAS  PubMed  Google Scholar 

  • MacLeod IM, Bowman PJ, Vander Jagt CJ, Haile-Mariam M, Kemper KE, Chamberlain AJ, et al. Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits. BMC Genomics. 2016;17:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics. 2010;11:288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maher B. The case of the missing heritability. Nature. 2008;456:18–21.

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marbouty M, Le Gall A, Cattoni DI, Cournac A, Koh A, Fiche J-B, et al. Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol Cell. 2015;59:588–602.

    Article  CAS  PubMed  Google Scholar 

  • Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellor J, Adam M, Robert F, Larochelle M, Gaudreau L, Adkins MW, et al. The dynamics of chromatin remodeling at promoters. Mol Cell. 2005;19:147–57.

    Article  CAS  PubMed  Google Scholar 

  • von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33(Database issue):D433–7.

    Article  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mewes HW, Heumann K, Kaps A, Mayer K, Pfeiffer F, Stocker S, et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 1999;27:44–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer CA, Liu XS. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet. 2014;15:709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45:353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods. 2013;10:949–55.

    Article  CAS  PubMed  Google Scholar 

  • Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;15:563–8.

    Article  CAS  PubMed  Google Scholar 

  • Moser G, Lee SH, Hayes BJ, Goddard ME, Wray NR, Visscher PM. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genet. 2015;11(4):e1004969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mousseau TA, Ritland K, Heath DD. A novel method for estimating heritability using molecular markers. Heredity (Edinb). 1998;80:218–24.

    Article  Google Scholar 

  • Muller-Myhsok B, Abel L. Genetic analysis of complex diseases. Science. 1997;275:1328–9.

    CAS  PubMed  Google Scholar 

  • Muñoz PR, Resende MFR, SA G, Deon M, Resende V. Unraveling additive from nonadditive effects using genomic relationship matrices. Genetics. 2014;198:1759–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, et al. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell. 2009;21:2194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320(5881):1344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagamine Y, Pong-Wong R, Navarro P, Vitart V, Hayward C, Rudan I, et al. Localising loci underlying complex trait variation using Regional Genomic Relationship Mapping. PLoS One. 2012;7(10):e46501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Li WH. Linkage disequilibrium in subdivided populations. Genetics. 1973;75:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nica AC, Montgomery SB, Dimas AS, Stranger BE, Beazley C, Barroso I, Dermitzakis ET. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 2010;6:e1000895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicolae DL, Gamazon E, Zhang W, Duan S, Eileen Dolan M, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6(4):e1000895.

    Article  CAS  Google Scholar 

  • Nordborg M. Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics. 2000;154:923–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordborg M, Donnelly P. The coalescent process with selfing. Genetics. 1997;146:1185–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onengut-Gumuscu S, Chen W-M, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47:381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paape T, Bataillon T, Zhou P, Kono TJY, Briskine R, Young ND, et al. Selection, genome-wide fitness effects and evolutionary rates in the model legume Medicago truncatula. Mol Ecol. 2013;22:3525–38.

    Article  CAS  PubMed  Google Scholar 

  • Pal LR, Yu C-H, Mount SM, Moult J. Insights from GWAS: emerging landscape of mechanisms underlying complex trait disease. BMC Genomics. 2015;16(Suppl 8):S4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panagiotou OA, Willer CJ, Hirschhorn JN, Ioannidis JPA. The power of meta-analysis in genome-wide association studies. Annu Rev Genomics Hum Genet. 2013;14:441–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10:669–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavy N, Namroud M-C, Gagnon F, Isabel N, Bousquet J. The heterogeneous levels of linkage disequilibrium in white spruce genes and comparative analysis with other conifers. Heredity. 2012;108(3):273–84.

    Article  CAS  PubMed  Google Scholar 

  • Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B, et al. Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res. 2004;32:D497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pers TH, Karjalainen JM, Chan Y, Westra H-J, Wood AR, Yang J, et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun. 2015;6:5890.

    Article  CAS  PubMed  Google Scholar 

  • Pickrell JK. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am J Hum Genet. 2014;94:559–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt D, Chen J, Welker D, Rivas R, Pillich R, Rynkov V, et al. NDEx, the network data exchange. Cell Syst. 2015;1:302–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet. 1999;65:220–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12:529–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rands CM, Meader S, Ponting CP, Lunter G. 8.2% of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. PLoS Genet. 2014;10:e1004525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven LA, Cocks BG, Kemper KE, Chamberlain AJ, Vander Jagt CJ, Goddard ME, et al. Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle. Mamm Genome. 2016;27:81–97.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet. 2015;16:85–97.

    Article  CAS  PubMed  Google Scholar 

  • Ritland K. Marker-based method for inferences about quantitative inheritance in natural populations. Evolution. 1996;50:1062–73.

    Article  PubMed  Google Scholar 

  • Ritland K. Marker-inferred relatedness as a tool for detecting heritability in nature. Mol Ecol. 2000;9:1195–204.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES. Open chromatin reveals the functional maize genome. Proc Natl Acad Sci U S A. 2016;113:E3177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y, et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 2011;7(1):e1001273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardiu ME, Washburn MP. Building protein-protein interaction networks with proteomics and informatics tools. J Biol Chem. 2011;286:23645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PIW, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.

    Article  CAS  PubMed  Google Scholar 

  • Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22:1748–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schones DE, Cui K, Cuddapah S, Roh T-Y, Barski A, Wang Z, et al. Dynamic regulation of nucleosome positioning in the human genome. Cell. 2008;132:887–98.

    Article  CAS  PubMed  Google Scholar 

  • Schork AJ, Thompson WK, Pham P, Torkamani A, Roddey JC, Sullivan PF, et al. All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs (G Gibson, Ed). PLoS Genet. 2013;9:e1003449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott LJ, Muglia P, Kong XQ, Guan W, Flickinger M, Upmanyu R, et al. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci U S A. 2009;106:7501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada-Sugimoto M, Otowa T, Miyagawa T, Umekage T, Kawamura Y, Bundo M, et al. Epigenome-wide association study of DNA methylation in panic disorder. Clin Epigenetics. 2017;9:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shirali M, Pong-Wong R, Navarro P, Knott S, Hayward C, Vitart V, et al. Regional heritability mapping method helps explain missing heritability of blood lipid traits in isolated populations. Heredity (Edinb). 2016;116:333–8.

    Article  CAS  Google Scholar 

  • Shu W, Chen H, Bo X, Wang S. Genome-wide analysis of the relationships between DNaseI HS, histone modifications and gene expression reveals distinct modes of chromatin domains. Nucleic Acids Res. 2011;39:7428–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Sijde MR, Ng A, Fu J. Systems genetics: from GWAS to disease pathways. Biochim Biophys Acta Mol Basis Dis. 2014;1842:1903–9.

    Article  CAS  Google Scholar 

  • Silventoinen K, Sammalisto S, Perola M, Boomsma DI, Cornes BK, Davis C, et al. Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res. 2003;6:399–408.

    Article  PubMed  Google Scholar 

  • Slatkin M. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008;9:477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Sluis S, Verhage M, Posthuma D, Dolan CV. Phenotypic complexity, measurement bias, and poor phenotypic resolution contribute to the missing heritability problem in genetic association studies. PLoS One. 2010;5(11):e13929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soulé M. Phenetics of natural populations I. Phenetic relationships of insular populations of the side-blotched lizard. Evolution. 1967;21:584–91.

    Article  PubMed  Google Scholar 

  • Sozzani R, Busch W, Spalding EP, Benfey PN. Advanced imaging techniques for the study of plant growth and development. Trends Plant Sci. 2014;19:304–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spain SL, Barrett JC. Strategies for fine-mapping complex traits. Hum Mol Genet. 2015;24:R111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speed D, Balding DJ. MultiBLUP: improved SNP-based prediction for complex traits. Genome Res. 2014;24:1550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speed D, Balding DJ. Relatedness in the post-genomic era: is it still useful? Nat Rev Genet. 2015;16:33–44.

    Article  CAS  PubMed  Google Scholar 

  • Speed D, Hemani G, Johnson MR, Balding DJ. Improved heritability estimation from genome-wide SNPs. Am J Hum Genet. 2012;91:1011–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speed D, Hemani G, Johnson MR, Balding DJ. Response to Lee et al.: SNP-based heritability analysis with dense data. Am J Hum Genet. 2013;93:1155–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey G, Libault M, Brechenmacher L, Wan J, May GD. Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol. 2006;9:110–21.

    Article  CAS  PubMed  Google Scholar 

  • Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J, et al. Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS One. 2013;8(5):e65688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34:D535–9.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Wu R. Mapping complex traits as a dynamic system. Phys Life Rev. 2015;13:155–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Svishcheva GR, Axenovich TI, Belonogova NM, van Duijn CM, Aulchenko YS. Rapid variance components-based method for whole-genome association analysis. Nat Genet. 2012;44:1166–70.

    Article  CAS  PubMed  Google Scholar 

  • Swarts K, Li HH, Navarro JAR, An D, Romay MC, Hearne S, Acharya C, et al. Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome. 2014;7:1–12.

    Article  CAS  Google Scholar 

  • Swerdlow DI, Kuchenbaecker KB, Shah S, Sofat R, Holmes MV, White J, et al. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies. Int J Epidemiol. 2016;45(5):1600–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin. 2015;8:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tasan M, Musso G, Hao T, Vidal M, MacRae CA, Roth FP. Selecting causal genes from genome-wide association studies via functionally coherent subnetworks. Nat Methods. 2014;12:154–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A. 2001;98:9161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teo YY, Fry AE, Bhattacharya K, Small KS, Kwiatkowski DP, Clark TG. Genome-wide comparisons of variation in linkage disequilibrium. Genome Res. 2009;19:1849–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trynka G, Hunt KA, Bockett NA, Romanos J, Castillejo G, de la Concha EG, et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet. 2012a;43:1193–201.

    Article  CAS  Google Scholar 

  • Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet. 2012b;45:124–30.

    Article  PubMed  CAS  Google Scholar 

  • Tsompana M, Buck MJ. Chromatin accessibility: a window into the genome. Epigenetics Chromatin. 2014;7:33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tulah AS, Holloway JW, Sayers I, Yang I, Savarimuthu S, Kim S, et al. Defining the contribution of SNPs identified in asthma GWAS to clinical variables in asthmatic children. BMC Med Genet. 2013;14:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanLiere JM, Rosenberg NA. Mathematical properties of the r2 measure of linkage disequilibrium. Theor Popul Biol. 2008;74:130–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414–23.

    Article  CAS  PubMed  Google Scholar 

  • VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, et al. Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci. 2009;92:16–24.

    Article  CAS  PubMed  Google Scholar 

  • Vastrik I, D’Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 2007;8:R39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vera DL, Madzima TF, Labonne JD, Alam MP, Hoffman GG, Girimurugan SB, et al. Differential nuclease sensitivity profiling of chromatin reveals biochemical footprints coupled to gene expression and functional DNA elements in maize. Plant Cell. 2014;26:3883–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1–48.

    Article  Google Scholar 

  • Vinkhuyzen AA, Wray NR, Yang J, Goddard ME, Visscher PM. Estimation and partitioning of heritability in human populations using whole genome analysis methods. Annu Rev Genet. 2013;47:75–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher PM. Sizing up human height variation. Nat Genet. 2008;40:489–90.

    Article  CAS  PubMed  Google Scholar 

  • Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2006;2:0316–25.

    Article  CAS  Google Scholar 

  • Visscher PM, Macgregor S, Benyamin B, Zhu G, Gordon S, Medland S, et al. Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am J Hum Genet. 2007;81:1104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher PM, Hill WG, Wray NR. Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet. 2008;9:255–66.

    Article  CAS  PubMed  Google Scholar 

  • Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90:7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101:5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitezica ZG, Varona L, Legarra A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics. 2013;195:1223–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voight BF, Kang HM, Ding J, Palmer CD, Sidore C, Chines PS, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 2012;8(8):e1002793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH. The epigenotype. Int J Epidemiol. 2012;41:10–3.

    Article  CAS  PubMed  Google Scholar 

  • Wallace BC, Schmid CH, Lau J, Trikalinos TA, Lau J, Schmid C, et al. Meta-analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Med Res Methodol. 2009;9:80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES. Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet. 2014;10:e1004845.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walter A, Liebisch F, Hund A. Plant phenotyping: from bean weighing to image analysis. Plant Methods. 2015;11:14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Uilecan IV, Assadi AH, Kozmik CA, Spalding EP. HYPOTrace: image analysis software for measuring hypocotyl growth and shape demonstrated on Arabidopsis seedlings undergoing photomorphogenesis. Plant Physiol. 2009;149:1632–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet. 2010;11:843–54.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Matsushita T, Madireddy L, Mousavi P, Baranzini SE. PINBPA: cytoscape app for network analysis of GWAS data. Bioinformatics. 2015a;31:262–4.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Yu H, Zhao Z, Jia P. EW_dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles. Bioinformatics. 2015b;31:2591–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet. 2008;40:575–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weintraub H, Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976;193(4256):848–56.

    Article  CAS  PubMed  Google Scholar 

  • Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Mägi R, et al. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc. 2014;9:1192–212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wise PM, Challagundla KB, Fabbri M. Epigenetics and microRNAs in cancer. In: Rezaei N, editor. Cancer immunology: a translational medical context. New York: Springer; 2015. p. 285–94.

    Chapter  Google Scholar 

  • Wolfe MD, Kulakow P, Rabbi IY, Jannink J-L. Marker-based estimates reveal significant non-additive effects in clonally propagated cassava (Manihot esculenta): implications for the prediction of total genetic value and the selection of varieties. G3 (Bethesda). 2016;6:3497–506.

    Article  Google Scholar 

  • Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46:1173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wray NR. Allele frequencies and the r2 measure of linkage disequilibrium: impact on design and interpretation of association studies. Twin Res Hum Genet. 2005;8:87–94.

    Article  PubMed  Google Scholar 

  • WTCCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Article  CAS  Google Scholar 

  • Wu G, Feng X, Stein L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 2010;11:R53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xenarios I, Salwínski L, Duan XJ, Higney P, Kim S-M, Eisenberg D. DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002;30:303–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011a;88:76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet. 2011b;43:519–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. 2014;46:100–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Lee SH, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet. 2015a;47:1114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Lee SH, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet. 2015b;47:1114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Fritsche LG, Zhou X, Abecasis G, International Age-Related Macular Degeneration Genomics Consortium. A scalable Bayesian method for integrating functional information in genome-wide association studies. Am J Hum Genet. 2017;101:404–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao H, Zhou Q, Li J, Smith H, Yandeau M, Nikolau BJ, et al. Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc Natl Acad Sci U S A. 2002;99:6157–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong W-S, Hsu F-M, Chen P-Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin. 2016;9:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–8.

    Article  CAS  PubMed  Google Scholar 

  • Yu C-P, Lin J-J, Li W-H. Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Sci Rep. 2016;6:25164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeggini E, Ioannidis JPA. Meta-analysis in genome-wide association studies. Pharmacogenomics. 2009;10:191–201.

    Article  PubMed  Google Scholar 

  • Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Bai G, Zhu C, Yu J, Carver BF. Genetic diversity, population structure, and linkage disequilibrium in U.S. elite winter wheat. Plant Genome J. 2010a;3:117–27.

    CAS  Google Scholar 

  • Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010b;42:355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, McCord RP, Ho Y-J, Lajoie BR, Hildebrand DG, Simon AC, et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell. 2012;148:908–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association mapping in plants. Plant Genome J. 2008;1:5–20.

    CAS  Google Scholar 

  • Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci. 2012;109:1193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A. 2014;111:E455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pino Del Carpio, D., Lozano, R., Wolfe, M.D., Jannink, JL. (2018). Genome-Wide Association Studies and Heritability Estimation in the Functional Genomics Era. In: Rajora, O. (eds) Population Genomics. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_12

Download citation

Publish with us

Policies and ethics