Evaluation of the Global Altimetric Marine Gravity Field DTU15: Using Marine Gravity and GOCE Satellite Gravity

  • O. B. AndersenEmail author
  • P. Knudsen
  • S. Kenyon
  • S. Holmes
  • John K. Factor
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 149)


Global marine gravity field modelling using satellite altimetry has been undergoing constant improvement since the launch of Cryosat-2 mission in 2010. With its 369 day-repeat Cryosat-2 provides one repeat of geodetic mission data with 8 km global resolution each year. Together with the completion of the Jason-1 end-of-life geodetic mission in 2011 and 2012, these new satellites has provided more than 4 times three times as much geodetic missions altimetric sea surface height observations than ever before. The higher precision of these new sea surface height observations compared with observations from ERS-1 and Geosat results in a dramatic improvement of the shorter wavelength of the gravity field (12–20 km) resulting in much favorable comparison with marine gravity. The pan-Arctic altimetric gravity field now surpassing 2008 Arctic Gravity Field project derived from multiple gravity field sources. A direct comparison between Arctic marine gravity fields and independent gravity field from the Gravity Field and Steady-State Ocean Circulation Explorer to degree and order 280 confirms this.


GOCE Marine gravity Satellite altimetry 


  1. Andersen OB, Scharroo R (2011) Range and geophysical corrections in coastal regions: and implications for mean sea surface determination. In: Vignudelli S et al (eds) Coastal altimetry. Springer, New York, pp 103–145. CrossRefGoogle Scholar
  2. Andersen OB, Knudsen P, Berry P (2010a) Recent development in high resolution global altimetric gravity field modeling. Lead Edge 29(5):540–545, ISSN: 1070-485XCrossRefGoogle Scholar
  3. Andersen OB, Knudsen P, Berry PAM (2010b) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84:191–199. CrossRefGoogle Scholar
  4. Jain M, Andersen OB, Dall J, Stenseng L (2015) Sea surface height determination in the Arctic using Cryosat-2 SAR data from primary peak empirical retrackers. Adv Space Res 55(1):40–50. ISSN: 0273-1177CrossRefGoogle Scholar
  5. Pavlis NK, Holmes S, Kenyon S, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res.
  6. Raney RK (1998) The delay Doppler radar altimeter. IEEE Trans Geosci Remote Sens 36:1578–1588CrossRefGoogle Scholar
  7. Sandwell DT, Garcia E, Soofi K, Wessel P, Chandler M, Smith WHF (2013) Towards 1-mGal accuracy in global marine gravity from Cryosat-2, Envisat and Jason-1. Lead Edge 2013:892–898CrossRefGoogle Scholar
  8. Sandwell DT, Müller RD, Smith WH, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67. CrossRefGoogle Scholar
  9. Stenseng L, Andersen OB (2012) Preliminary gravity recovery from CryoSat-2 data in the Baffin Bay. Adv Space Res 50(8):1158–1163CrossRefGoogle Scholar
  10. Wingham D, Francis CR, Baker S, Bouzinac C, Brockley D, Cullen R, de Chateau-Thierry P, Laxon SW, Mallow U, Mavrocordatos C, Phalippou L, Ratier G, Rey L, Rostan F, Viau P, Wallis DW (2006) CryoSat-2: a mission to determine the fluctuations in Earths land and marine ice fields. Adv Space Res 37(4)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • O. B. Andersen
    • 1
    Email author
  • P. Knudsen
    • 1
  • S. Kenyon
    • 2
  • S. Holmes
    • 3
  • John K. Factor
    • 4
  1. 1.DTU SpaceKongens LyngbyDenmark
  2. 2.S2 AnalyticsArnoldUSA
  3. 3.SGT-incGreenbeltUSA
  4. 4.NGAArnoldUSA

Personalised recommendations