Advertisement

Testing Special Relativity with Geodetic VLBI

  • Oleg Titov
  • Hana KrásnáEmail author
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 149)

Abstract

Geodetic Very Long Baseline Interferometry (VLBI) measures the group delay in the barycentric reference frame. As the Earth is orbiting around the Solar system barycentre with the velocity V of 30 km/s, VLBI proves to be a handy tool to detect the subtle effects of the special and general relativity theory with a magnitude of (V∕c)2. The theoretical correction for the second order terms reaches up to 300 ps, and it is implemented in the geodetic VLBI group delay model. The total contribution of the second order terms splits into two effects – the variation of the Earth scale, and the deflection of the apparent position of the radio source. The Robertson-Mansouri-Sexl (RMS) generalization of the Lorenz transformation is used for many modern tests of the special relativity theory. We develop an alteration of the RMS formalism to probe the Lorenz invariance with the geodetic VLBI data. The kinematic approach implies three parameters (as a function of the moving reference frame velocity) and the standard Einstein synchronisation. A generalised relativistic model of geodetic VLBI data includes all three parameters that could be estimated. Though, since the modern laboratory Michelson-Morley and Kennedy-Thorndike experiments are more accurate than VLBI technique, the presented equations may be used to test the VLBI group delay model itself.

Keywords

Lorentz invariance Special relativity VLBI 

Notes

Acknowledgements

The authors thank the anonymous reviewers for their suggestions and comments which helped to improve the manuscript significantly. We acknowledge the IVS and all its components for providing VLBI data (Nothnagel et al. 2015). Hana Krásná works within the Hertha Firnberg position T697-N29, funded by the Austrian Science Fund (FWF). This paper has been published with the permission of the Geoscience Australia CEO.

References

  1. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131. https://doi.org/10.1002/2016JB013098 CrossRefGoogle Scholar
  2. Cole TW (1976) Astronomical tests for the presence of an ether. Mon Not R Astron Soc 175(1):93P–96P.  https://doi.org/10.1093/mnras/175.1.93P CrossRefGoogle Scholar
  3. Herrmann S, Senger A, Möhle K, Nagel M, Kovalchuk EV, Peters A (2009) Rotating optical cavity experiment testing lorentz invariance at the 10−17 level. Phys Rev D 80:105,011.  https://doi.org/10.1103/PhysRevD.80.105011 CrossRefGoogle Scholar
  4. Kennedy RJ, Thorndike EM (1932) Experimental establishment of the relativity of time. Phys Rev 42:400–418.  https://doi.org/10.1103/PhysRev.42.400 CrossRefGoogle Scholar
  5. Klioner S, Zschocke S, Soffel M, Butkevich A (2012) Testing local Lorentz invariance with high-accuracy astrometric observations. In: The twelfth Marcel Grossmann meeting, pp 1478–1480. https://doi.org/10.1142/9789814374552_0251
  6. Lambert SB, Le Poncin-Lafitte C (2009) Determining the relativistic parameter gamma using very long baseline interferometry. Astron Astrophys 499(1):331–335. https://doi.org/10.1051/0004-6361/200911714 CrossRefGoogle Scholar
  7. Le Poncin-Lafitte C, Hees A, Lambert S (2016) Lorentz symmetry and very long baseline interferometry. Phys Rev D 94:125,030.  https://doi.org/10.1103/PhysRevD.94.125030 CrossRefGoogle Scholar
  8. Mansouri R, Sexl R (1977a) A test theory of special relativity: I. Simultaneity and clock synchronization. Gen Relativ Gravit 8(7):497–513. https://doi.org/10.1007/BF00762634 CrossRefGoogle Scholar
  9. Mansouri R, Sexl R (1977b) A test theory of special relativity: III. Second-order tests. Gen Relativ Gravit 8(10):809–814. https://doi.org/10.1007/BF00759585 CrossRefGoogle Scholar
  10. Michelson A, Morley E (1887) On the relative motion of the earth and the luminiferous ether. Am J Sci 34(203):333–345.  https://doi.org/10.2475/ajs.s3-34.203.333 CrossRefGoogle Scholar
  11. Nothnagel A, Alef W, Amagai J, Andersen PH, Andreeva T, Artz T, Bachmann S, Barache C, Baudry A, Bauernfeind E et al (2015) The IVS data input to ITRF2014. GFZ Data Services, Helmoltz Centre, Potsdam, Germany.  https://doi.org/10.5880/GFZ.1.1.2015.002
  12. Petit G, Luzum B (2010) IERS Conventions 2010. IERS Technical Note No. 36Google Scholar
  13. Robertson H (1949) Postulate versus observation in the special theory of relativity. Rev Mod Phys 21:378–382.  https://doi.org/10.1103/RevModPhys.21.378 CrossRefGoogle Scholar
  14. Robertson DS, Carter WE (1984) Relativistic deflection of radio signals in the solar gravitational field measured with VLBI. Nature 310:572–574. https://doi.org/10.1038/310572a0 CrossRefGoogle Scholar
  15. Shapiro SS, Davis JL, Lebach DE, Gregory JS (2004) Measurement of the solar gravitational deflection of radio waves using geodetic very-long-baseline interferometry data, 1979–1999. Phys Rev Lett 92:121,101.  https://doi.org/10.1103/PhysRevLett.92.121101 CrossRefGoogle Scholar
  16. Smoot GF, Gorenstein MV, Muller RA (1977) Detection of anisotropy in the cosmic blackbody radiation. Phys Rev Lett 39:898–901.  https://doi.org/10.1103/PhysRevLett.39.898 CrossRefGoogle Scholar
  17. Tobar ME, Wolf P, Bize S, Santarelli G, Flambaum V (2010) Testing local lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser. Phys Rev D 81:022,003.  https://doi.org/10.1103/PhysRevD.81.022003 CrossRefGoogle Scholar
  18. Will CM (1992) Clock synchronization and isotropy of the one-way speed of light. Phys Rev D 45:403–411.  https://doi.org/10.1103/PhysRevD.45.403 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Geoscience AustraliaCanberraAustralia
  2. 2.Technische Universität WienViennaAustria
  3. 3.Astronomical InstituteCzech Academy of SciencesPragueCzech Republic

Personalised recommendations