Skip to main content

Comparing the Nigerian GNSS Reference Network’s Zenith Total Delays from Precise Point Positioning to a Numerical Weather Model

  • Conference paper
  • First Online:
Book cover International Symposium on Advancing Geodesy in a Changing World

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 149))

Abstract

As a pivotal infrastructure for the socio-economic development of Nigeria, the Nigerian Global Navigation Satellite Systems (GNSS) Reference Network – NIGNET – can serve as a tool for weather and climate monitoring, by obtaining and analyzing the neutral atmospheric Zenith Total Delays (ZTD) from processed GNSS data. With the use of surface meteorological measurements, the ZTD can be transformed to the integrated water vapor content in the neutral atmosphere, which is an essential parameter in weather forecasting, and climate change and variability analysis. The focus of this research is to assess the adaptability of the NIGNET for meteorological applications using the global positioning system precise point positioning (PPP) derived ZTD at the stations. ZTD estimates are derived from daily data obtained from the NIGNET and International GNSS Service (IGS) stations spanning the years 2011–2016. These estimates are compared with ray-traced delay estimates from the National Centre for Environmental Prediction Reanalysis II (NCEP II) global Numerical Weather Model (NWM) and the IGS zenith path delay products. A comprehensive analysis is performed to assess the level of agreement of the different ZTD estimates and to identify possible systematic effects from the different sources. Comparisons between the PPP and NCEP II NWM ZTD estimates show a range of mean offsets from −6.4 to 23.9 mm, and standard deviations from 33.1 to 44.9 mm. With the PPP and IGS ZTD estimates, mean offsets of −2.4 and −0.1 mm, and standard deviations of 9.9 and 13.8 mm are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://unb-vmf1.gge.unb.ca/About.html.

  2. 2.

    https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html.

References

  • Abdallah A (2015) The effect of convergence time on the static-PPP solution. Presented at 2nd international workshop on “Integration of point- and area-wise geodetic monitoring for structures and natural objects”, Stuttgart, 23–24 Mar 2015

    Google Scholar 

  • Ahmed F, Teferle N, Bingley R, Hunegnaw A (2014) A comparative analysis of tropospheric delay estimates from network and precise point positioning processing strategies. Poster presented at: IGS workshop, Pasadena, 23–27 June 2014

    Google Scholar 

  • Ahmed F, Teferle FN, Bingley RM, Laurichesse D (2015) The status of GNSS data processing systems to estimate integrated water vapour for use in numerical weather prediction models. In: Rizos C, Willis P (eds) IAG 150 years, International Association of Geodesy symposia. Springer, Cham, p 143

    Google Scholar 

  • Altamimi Z, Collileux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. https://doi.org/10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Balidakis K, Nilsson T, Zus F, Glaser S, Heinkelmann R, Deng Z, Schuh H (2018) Estimating integrated water vapor trends from VLBI, GPS, and numerical weather models: sensitivity to tropospheric parameterization. J Geophys Res Atmos 123:6356–6372. https://doi.org/10.1029/2017JD028049

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111. https://doi.org/10.1029/2005JB003629

  • Bolbol S, Ali AH, El-Sayed MS, Elbeah MN (2017) Performance evaluation of precise point positioning (PPP) using CSRS-PPP online service. Am J Geographic Inform Syst 6(4):156–167. https://doi.org/10.5923/j.ajgis.20170604.03

    Article  Google Scholar 

  • Byram S, Hackman C (2014) IGS final troposphere product update. Poster presented at IGS workshop 2014, Pasadena, 23–27 June 2014

    Google Scholar 

  • Byun SH, Bar-Sever YE (2009) A new type of troposphere zenith path delay product of the International GNSS Service. J Geod 83:367–373

    Article  Google Scholar 

  • Dousa J, Bennitt GV (2013) Estimation and evaluation of hourly updated global GPS Zenith Total Delays over ten months. GPS Solutions 17(4):453–464. https://doi.org/10.1007/s10291-012-0291-7

    Article  Google Scholar 

  • Eludoyin OM, Adelekan IO, Webster R, Eludoyin AO (2014) Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria. Int J Climatol 34:2000–2018

    Article  Google Scholar 

  • Farah H (2009) The African Reference Frame (AFREF) project: a fundamental geodetic tool for Africa. Geophys Res Abstr 11:EGU2009–EG13950

    Google Scholar 

  • Guo Q (2015) Precision comparison and analysis of four online free PPP services in static positioning and tropospheric delay estimation. GPS Solutions 19(4):537–544. https://doi.org/10.1007/s10291-014-0413-5

    Article  Google Scholar 

  • Isioye OA, Combrinck L, Botai J (2015) Performance evaluation of Blind Tropospheric delay correction models over Africa. S Afr J Geom 4(4):502–525. https://doi.org/10.4314/sajg.v4i4.10

    Article  Google Scholar 

  • Isioye OA, Combrinck L, Botai J (2016) Modelling weighted mean temperature in the West African region: implications for GNSS meteorology. Meteorol Appl 23:614–632. https://doi.org/10.1002/met.1584

    Article  Google Scholar 

  • Jatau B, Fernandes R, Adebomehin A, Gonçalves N (2010) NIGNET – the new permanent GNSS network of Nigeria. In: Proceedings of FIG congress 2010, Sydney

    Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Leandro R, Santos M, Langley R (2010) Analyzing GNSS data in precise point positioning software. GPS Solutions 15(1):1–13. https://doi.org/10.1007/s10291-010-0173-9

    Article  Google Scholar 

  • Li X, Zus F, Lu C, Dick G, Ning T, Ge M, Wickert J, Schuh H (2015) Retrieving of atmospheric parameters from multi-GNSS in real time: validation with water vapor radiometer and numerical weather model. J Geophys Res Atmos 120:7189–7204. https://doi.org/10.1002/2015JD023454

    Article  Google Scholar 

  • Nievinski FG, Santos MC (2010) Ray-tracing options to mitigate the neutral atmosphere delay in GPS. Geomatica 64(2):191–207

    Google Scholar 

  • Nikolaidou T, Nievinski F, Balidakis K, Schuh H, Santos M (2018) PPP without troposphere estimation: impact assessment of regional versus global numerical weather models and delay parametrization. International Association of Geodesy symposia. Accepted manuscript submitted for publication

    Google Scholar 

  • Ogungbenro SB, Eniolu T, Morakinyo TE (2014) Rainfall distribution and change detection across climatic zones in Nigeria. Weather Clim Extrem 5:1–6

    Google Scholar 

  • Olusola O, Kayode A, Israel E (2015) Spatial analysis of rainfall in the climatic regions of Nigeria using insitu data. J Environ Earth Sci 5(18):64–73

    Google Scholar 

  • UCAR (2011) The troposphere – overview. https://scied.ucar.edu/shortcontent/troposphere-overview. Accessed 1 Sept 2017

  • Urquhart L, Santos M (2011) Development of VMF1-like service. White paper, Department of Geodesy and Geomatics, University of New Brunswick, New Brunswick

    Google Scholar 

  • Urquhart L, Santos MC, Garcia CA, Langley RB, Leandro RF (2014) Global assessment of UNB’s online precise point positioning software. IAG Symp Ser 139:585–592. https://doi.org/10.1007/978-3-642-37222-3_77

    Article  Google Scholar 

  • Willoughby AA, Aro TO, Owolabi IE (2002) Seasonal variations of radio refractivity gradients in Nigeria. J Atmos Sol Terr Phys 64:417–425

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. https://doi.org/10.1029/96JB03860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Mayaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mayaki, A.O., Nikolaidou, T., Santos, M., Okolie, C.J. (2018). Comparing the Nigerian GNSS Reference Network’s Zenith Total Delays from Precise Point Positioning to a Numerical Weather Model. In: Freymueller, J., Sánchez, L. (eds) International Symposium on Advancing Geodesy in a Changing World. International Association of Geodesy Symposia, vol 149. Springer, Cham. https://doi.org/10.1007/1345_2018_43

Download citation

Publish with us

Policies and ethics