Advertisement

Status of Development of the Future Accelerometers for Next Generation Gravity Missions

  • B. ChristopheEmail author
  • B. Foulon
  • F. Liorzou
  • V. Lebat
  • D. Boulanger
  • P.-A. Huynh
  • N. Zahzam
  • Y. Bidel
  • A. Bresson
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 149)

Abstract

The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory) and GFZ (GeoForschungsZentrum), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth’s gravity field variation providing global climatic data during 5 years at least. Europe and US propose new gravity missions beyond GRACE-FO, with improved performance thanks to laser interferometry and better accelerometers. ONERA has procured the accelerometers for the previous geodetic mission (CHAMP, GRACE, GOCE and now GRACE-FO) and continues to improve the instruments to answer to the challenge of the future missions according to two main domains: Firstly, a new design of electrostatic accelerometer is proposed, based on MicroSTAR configuration, a 3-axes ultra-sensitive accelerometer, with a cubic proof-mass. Secondly, ONERA studies the hybridization of such electrostatic accelerometer with cold atom interferometer technology in order to take advantage of each instrument (high sensitivity for electrostatic accelerometer in short term, and absolute measurement for atom interferometer). A first result of the hybrid instrument, obtained on ground, is presented.

Keywords

Atom interferometer Electrostatic accelerometer Gravity 

Notes

Acknowledgements

The study on hybridized instrument was funded by ESA.

References

  1. Allasio A, Muzi D, Vinai B, Cesare S, Catastini G, Bard M, Marque J (2009) GOCE: space technology for the reference earth gravity field determination. In: EUCASS 2009, VersaillesGoogle Scholar
  2. Bidel Y, Carraz O, Charrière R, Cadoret M, Zahzam N, Bresson A (2013) Compact cold atom gravimeter for field applications. Appl Phys Lett 102:144107CrossRefGoogle Scholar
  3. Carraz O, Siemes C, Massotti L, Haagmans R, Silvestrin P (12 June 2015) Measuring the Earth’s gravity field with cold atom interferometers. arXiv:1506.03989 [physics, physics:quant-ph]. http://arxiv.org/abs/1506.03989
  4. Cesare S, Sechi G (2013) Next generation gravity mission. In: D’Errico M (ed) Distributed space missions for earth system monitoring. Space technology library, vol 31. Springer, New York, pp 575–598CrossRefGoogle Scholar
  5. Christophe B, Boulanger D, Foulon B, Huynh P-A, Lebat V, Liorzou F, Perrot E (2015) A new generation of ultra-sensitive electrostatic accelerometers for GRACE Follow-on and towards the next generation gravity missions. Acta Astronaut 117:1–7CrossRefGoogle Scholar
  6. Drinkwater M, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2007) The GOCE gravity mission: ESA’s first core Earth explorer. In: ESA Special Publication SP-627Google Scholar
  7. Elsaka B, Raimondo J-C, Brieden P, Reubelt T, Kusche J, Flechtner F, Iran Pour S, Sneeuw N, Müller J (2014) Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation. J Geod 88(1):31–43CrossRefGoogle Scholar
  8. Flechtner F, Morton P, Watkins M, Webb F, Status of the grace follow-on mission (2014). In: Marti U (ed) Gravity, geoid and height systems. International association of geodesy symposia, vol 141. Springer, Cham, pp 117–121Google Scholar
  9. Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H-G, Müller J, Peters A (2016) Mobile quantum gravity sensor with unprecedented stability. J Phys 723:012050Google Scholar
  10. Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P (2011) Detecting inertial effects with airborne matter-wave interferometry. Nat Commun 2(474).  https://doi.org/10.1038/ncomms1479
  11. Gillot P, Francis O, Landragin A, Pereira Dos Santos F, Merlet S (2014) Stability comparison of two absolute gravimeters: optical versus atomic interferometers Metrologia 51:L15Google Scholar
  12. Gruber T, Murböck M et al (2014) e2.motion - concept for a next generation gravity field mission, vol B318. Tech. rep., Deutche Geodätische Kommission der Bayerischen Akademie der Wissenschaften. ISBN: 978-3-7696-8597-8Google Scholar
  13. Hu Z-K, Sun B-L, Duan X-C, Zhou M-K, Chen L-L, Zhan S, Zhang Q-Z, Luo J (2013) Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys Rev A 88:043610CrossRefGoogle Scholar
  14. Lenoir B, Lévy A, Foulon B, Lamine B, Christophe B, Reynaud S (2011) Electrostatic accelerometer with bias rejection for gravitation and solar system physics. Adv Space Res 48(7):1248–1257CrossRefGoogle Scholar
  15. Panet I, Flury J, Biancale R, Gruber Th, Johannessen J, van den Broeke MR, van Dam T et al (2012) Earth system mass transport mission (e.motion): a concept for future earth gravity field measurements from space. Surv Geophys 34:141–163. https://doi.org/10.1007/s10712-012-9209-8 CrossRefGoogle Scholar
  16. Reigber C, Schwintzer P, Lühr P (1999) The CHAMP geopotential mission. Boll Geofis Teor Appl 40:285-289Google Scholar
  17. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607CrossRefGoogle Scholar
  18. Touboul P, Métris G, Rodrigues M et al (2017) MICROSCOPE mission: first results of a space test of the equivalence principle. Phys Rev Lett 119:231101.  https://doi.org/10.1103/PhysRevLett.119.231101 CrossRefGoogle Scholar
  19. von Kampen P, Kaczmarczik U, Rath HJ (2006) The new drop tower catapult system. Acta Astronaut 59(1):278–283. https://doi.org/10.1016/j.actaastro.2006.02.041 CrossRefGoogle Scholar
  20. Wiese DN, Folkner WM, Nerem RS (2009) Alternative mission architectures for a gravity recovery satellite mission. J Geod 83(1):569–581. https://doi.org/10.1007/s00190-008-0274-1 CrossRefGoogle Scholar
  21. Wiese DN, Nerem RS, Lemoine FG (2012) Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. J Geod 86(1):81–98. https://doi.org/10.1007/s00190-011-0493-8 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • B. Christophe
    • 1
    Email author
  • B. Foulon
    • 1
  • F. Liorzou
    • 1
  • V. Lebat
    • 1
  • D. Boulanger
    • 1
  • P.-A. Huynh
    • 1
  • N. Zahzam
    • 2
  • Y. Bidel
    • 2
  • A. Bresson
    • 2
  1. 1.DPHY, ONERAUniversité Paris SaclayChatillonFrance
  2. 2.DPHY, ONERAUniversité Paris SaclayPalaiseauFrance

Personalised recommendations