Advertisement

On Computation of Potential, Gravity and Gravity Gradient from GRACE Inter-Satellite Ranging Data: A Systematic Study

  • K. Ghobadi-FarEmail author
  • S.-C. Han
  • B. D. Loomis
  • S. B. Luthcke
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 149)

Abstract

In situ gravimetric observables are computed from GRACE inter-satellite K-band ranging (KBR) and GPS measurements, along with non-gravitational accelerations. For time-variable gravity field analysis, residual KBR data could be directly used to approximate gravimetric observables. We study the systematic errors in approximating potential difference, line-of-sight (LOS) gravity difference and LOS gravity gradient with residual KBR data. Based on a simulation study, we show that the approximation errors are significant at the low frequency part of the gravity spectrum for all three observable types. The approximation errors remain below 10% of the signal for the potential difference, LOS gravity difference, and LOS gravity gradient, at frequencies >1 cycle-per-revolution (CPR), >7 CPR, and 7–40 CPR, respectively. Considering the actual error of residual KBR data, it is feasible to accurately compute the gravimetric observables directly from band-pass filtered residual range-rate and range-acceleration data, and employ them for analyses concerning the regional time-variable gravity field of the Earth such as continental hydrology.

Keywords

GRACE KBR LOS gravity gradient LOS gravity difference Potential difference 

Notes

Acknowledgments

This work is funded by The University of Newcastle to support NASA’s GRACE and GRACE Follow-On projects as an international science team member to the missions.

References

  1. Bjerhammar A (1967) On the energy integral for satellites. Report of the Royal Institute of Technology (KTH). Division of Geodesy, StockholmGoogle Scholar
  2. Chen Y, Schaffrin B, Shum CK (2008) Continental water storage changes from GRACE line-of-sight range acceleration measurements. In: VI Hotine-Marussi symposium on theoretical and computational geodesy. Springer, Heidelberg, pp 62–66CrossRefGoogle Scholar
  3. Ditmar P, Da Encarnação JT, Farahani HH (2012) Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. J Geod 86(6):441–465.  https://doi.org/10.1007/s00190-011-0531-6 CrossRefGoogle Scholar
  4. Guo JY, Shang K, Jekeli C, Shum CK (2015) On the energy integral formulation of gravitational potential differences from satellite-to-satellite tracking. Celest Mech Dyn Astron 121(4):415–429.  https://doi.org/10.1007/s10569-015-9610-y CrossRefGoogle Scholar
  5. Han SC, Shum CK, Jekeli C, Alsdorf D (2005) Improved estimation of terrestrial water storage changes from GRACE. Geophys Res Lett 32(7).  https://doi.org/10.1029/2005GL022382
  6. Jekeli C (1999) The determination of gravitational potential differences from satellite-to-satellite tracking. Celest Mech Dyn Astron 75(2):85–101.  https://doi.org/10.1023/A:1008313405488 CrossRefGoogle Scholar
  7. Jekeli C (2017) The energy balance approach. In: Naeimi M, Flury J (eds) Global gravity field modeling from satellite-to-satellite tracking data, Lecture notes in earth system sciences. Springer, Heidelberg, pp 127–160.  https://doi.org/10.1007/978-3-319-49941-3_5 CrossRefGoogle Scholar
  8. Keller W, Sharifi MA (2005) Satellite gradiometry using a satellite pair. J Geod 78(9):544–557.  https://doi.org/10.1007/s00190-004-0426-x CrossRefGoogle Scholar
  9. Killett B, Wahr J, Desai S, Yuan D, Watkins M (2011) Arctic Ocean tides from GRACE satellite accelerations. J Geophys Res Oceans 116(C11).  https://doi.org/10.1029/2011JC007111
  10. Luthcke SB, Sabaka TJ, Loomis BD, Arendt AA, McCarthy JJ, Camp J (2013) Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J Glaciol 59(216):613–631CrossRefGoogle Scholar
  11. Rummel R (1979) Determination of short-wavelength components of the gravity field from satellite-to-satellite tracking or satellite gradiometry. Manuscr Geodaet 4(2):107–148Google Scholar
  12. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505.  https://doi.org/10.1126/science.1099192 CrossRefGoogle Scholar
  13. Weigelt M (2017) The acceleration approach. In: Naeimi M, Flury J (eds) Global gravity field modeling from satellite-to-satellite tracking data, Lecture notes in earth system sciences. Springer, Heidelberg, pp 97–126.  https://doi.org/10.1007/978-3-319-49941-3_4 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • K. Ghobadi-Far
    • 1
    Email author
  • S.-C. Han
    • 1
  • B. D. Loomis
    • 2
  • S. B. Luthcke
    • 2
  1. 1.School of EngineeringUniversity of NewcastleCallaghanAustralia
  2. 2.Geodesy and Geophysics LaboratoryNASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations