Advertisement

Evaluation of Altimetry Data in the Baltic Sea Region for Computation of New Quasigeoid Models over Poland

  • Joanna Kuczynska-SiehienEmail author
  • Adam Lyszkowicz
  • Michael G. Sideris
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 149)

Abstract

The paper presents the comparison and validation of currently available gravity anomalies from the satellite altimetry models with the shipborne and airborne gravity anomalies along the Polish coast and in the Baltic Sea. The mean value of differences between the investigated DTU10 and GMG V24.1 altimetry-derived models is equal to 0.02 mGal. However, significant differences can be seen in the coastal areas. Shipborne and airborne marine gravity datasets, collected over the past 65 years by various institutions, were also compared.

Furthermore, the new gravimetric quasigeoid models for the territory of Poland were computed using the new gravity data from the satellite altimetry, the EIGEN-6C4 geopotential model, and the SRTM elevation model. The accuracy of these models, estimated using the ASG-EUPOS permanent GNSS stations, reaches 1.4 cm.

Keywords

Baltic Sea gravity data Regional quasigeoid model Satellite altimetry models 

Notes

Acknowledgements

Land and marine gravity data were kindly released from Institute of Geodesy and Cartography in Warsaw, Finnish Geodetic Institute, Polish Space Research Centre PAS and Kort&Matrikelstyrelsen. All figures were prepared using MAP-LAB (Piretzidis and Sideris 2016).

References

  1. Amos MJ, Featherstone WE, Brett J (2005) Crossover adjustment of New Zealand marine gravity data, and comparisons with satellite altimetry and global geopotential models. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions. Springer, Berlin, pp 266–271.  https://doi.org/10.1007/3-540-26932-0_46 CrossRefGoogle Scholar
  2. Andersen OB (2010) The DTU10 gravity field and mean sea surface. In: Second international symposium of the gravity field of the Earth (IGFS2), Fairbanks, AlaskaGoogle Scholar
  3. Andersen OB, Knudsen P, Berry PAM (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84:191.  https://doi.org/10.1007/s00190-009-0355-9 CrossRefGoogle Scholar
  4. Bosy J, Oruba A, Graszka W, Leonczyk M, Ryczywolski M (2008) ASG-EUPOS densification of EUREF Permanent Network on the territory of Poland. Reports on Geodesy No 2(85): 105–112Google Scholar
  5. Claessens SJ (2012) Evaluation of gravity and altimetry data in Australian coastal regions. In: Kenyon S, Pacino M, Uri M (eds) Geodesy for planet earth: proceedings of the 2009 IAG symposium, vol 136. Springer, Berlin, pp 435–442.  https://doi.org/10.1007/978-3-642-20338-1_52 CrossRefGoogle Scholar
  6. Deng XL, Featherstone WE, Hwang C, Berry PAM (2002) Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Mar Geod 25(4):249–271.  https://doi.org/10.1080/01490410290051572 CrossRefGoogle Scholar
  7. Forsberg R, Tscherning CC (2008) An overview manual for the GRAVSOFT geodetic gravity field modelling programs, 2nd edn. Technical University of CopenhagenGoogle Scholar
  8. Fotopoulos G (2003) An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data. PhD Thesis, University of CalgaryGoogle Scholar
  9. Förste Ch, Bruinsma SL, Abrikosov O, Lemoine JM, Schaller T, Götze HJ, Ebbing J, Marty JC, Flechtner F, Balmino G, Biancale R (2014) The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS ToulouseGoogle Scholar
  10. Grushinsky NP (1976) Theory of the earth figure. Nauka, MoscowGoogle Scholar
  11. Krynski J (2007) Precise quasigeoid modelling in Poland—results and accuracy estimation (in Polish). Monographic series of the Institute of Geodesy and Cartography, No 13, Warsaw, Poland, p 266Google Scholar
  12. Kuczynska-Siehien J, Lyszkowicz A, Birylo M (2016) Geoid determination for the area of Poland by the least squares modification of Stokes’ formula. Acta Geodyn Geomater 13(1):181.  https://doi.org/10.13168/AGG.2015.0041 CrossRefGoogle Scholar
  13. Lyszkowicz A (1994) Gravity anomalies for the Southern Part of Baltic Sea and their statistics. In: Proceedings of the Joint Symposium of the International Gravity Commission and the International Geoid Commission, Graz, Austria, pp 102–107Google Scholar
  14. Lyszkowicz A (2010) Quasigeoid for the area of Poland computed by least squares collocation. Technical Sciences, No 13, Y 2010Google Scholar
  15. Lyszkowicz A, Denker H (1994) Computation of gravimetric geoid for Poland using FFT. Artificial satellites, planetary geodesy No 21, str.1-11Google Scholar
  16. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res 117(B4).  https://doi.org/10.1029/2011JB008916
  17. Piretzidis D, Sideris MG (2016) MAP-LAB: A MATLAB graphical user interface for generating maps for geodetic and oceanographic applications. In: Poster presented at the international symposium on gravity, geoid and height systems 2016, 19–23 September 2016, Thessaloniki, Greece,  https://doi.org/10.13140/RG.2.2.16099.76323
  18. Reuter HI, Nelson A, Jarvis A (2007) An evaluation of void filling interpolation methods for SRTM data. Int J Geogr Inf Sci 21(9):983–1008.  https://doi.org/10.1080/13658810601169899 CrossRefGoogle Scholar
  19. Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS altimetry: ridge segmentation versus spreading rate. J Geophys Res 114:B01411.  https://doi.org/10.1029/2008JB006008 CrossRefGoogle Scholar
  20. Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67.  https://doi.org/10.1126/science.1258213 CrossRefGoogle Scholar
  21. Sansò F, Sideris MG (2013) Geoid determination: theory and methods (lecture notes in earth sciences). Springer, BerlinCrossRefGoogle Scholar
  22. Szelachowska M, Krynski J (2014) GDQM-PL13 - the new gravimetric quasigeoid model for Poland. Geoinf Issues 1(6):5–19Google Scholar
  23. Torge W (2001) Geodesy, 3rd edn. de Gruyter, BerlinCrossRefGoogle Scholar
  24. Torge W, Müller J (2012) Geodesy, 4th edn. Walter de Gruyter, Berlin. ISBN 978-3-25-020718-7CrossRefGoogle Scholar
  25. Vaniček P, Christou NT (eds) (1994) Geoid and its geophysical interpretations. CRS Press, Boca RatonGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joanna Kuczynska-Siehien
    • 1
    • 2
    Email author
  • Adam Lyszkowicz
    • 3
  • Michael G. Sideris
    • 1
  1. 1.Department of Geomatics EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Faculty of Geodesy, Geospatial and Civil EngineeringUniversity of Warmia and Mazury in OlsztynOlsztynPoland
  3. 3.Polish Air Force AcademyDęblinPoland

Personalised recommendations