Advertisement

GEOMED2: High-Resolution Geoid of the Mediterranean

  • R. BarzaghiEmail author
  • D. Carrion
  • G. S. Vergos
  • I. N. Tziavos
  • V. N. Grigoriadis
  • D. A. Natsiopoulos
  • S. Bruinsma
  • F. Reinquin
  • L. Seoane
  • S. Bonvalot
  • M. F. Lequentrec-Lalancette
  • C. Salaün
  • O. Andersen
  • P. Knudsen
  • A. Abulaitijiang
  • M. H. Rio
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 149)

Abstract

Geoid models for the Mediterranean were computed using the remove-compute-restore method and Stokes-FFT, using shipborne gravity or altimetry inferred gravity data over sea and land gravity data. The remove step over sea does not include residual terrain correction (bathymetry), which leads to slightly worse results. The models were compared to an independent geoid constructed by subtracting the Mean Dynamic Topography from the Mean Sea Surface, and secondly to drifter-observed current speeds. Results revealed significant errors in the gravimetric geoid at smallest scales, and analysis of the results of this intermediate model showed that improvement is required in the gravity data preprocessing, specifically the de-biasing of marine data, as well as the gridding (interpolation) procedure. These issues will be addressed before the release of the final geoid model early 2018. Based on the drifter comparisons, the geoid based on altimeter data is the most accurate, more accurate than EIGEN6C4, and notably so at scales less than 50 km.

Keywords

Altimetry, Geoid, Mean Dynamic Topography, Mediterranean Sea 

References

  1. Allan TD, Morelli C (1971) A geophysical study of the Mediterranean Sea. NATO Subcommittee on oceanographic Research, Technical reports n 55, 141 ppGoogle Scholar
  2. Andersen OB, Knudsen P, Berry P (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84(3):191–199.  https://doi.org/10.1007/s00190-009-0355-9 CrossRefGoogle Scholar
  3. Andersen OB, Knudsen P, Kenyon S, Factor JK, Holmes S (2017) Global gravity field from recent satellites (DTU15) – Arctic improvements. EAGE First Break 35(11):37–40Google Scholar
  4. Bruinsma SL, Förste C, Abrikosov O, Lemoine JM, Marty JC, Mulet S, Rio MH, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41(21):7508–7514.  https://doi.org/10.1002/2014GL062045 CrossRefGoogle Scholar
  5. Farr TG et al (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004.  https://doi.org/10.1029/2005RG000183 CrossRefGoogle Scholar
  6. Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services.  https://doi.org/10.5880/icgem.2015.1
  7. Forsberg R, Tscherning CC (2008) Gravsoft manualGoogle Scholar
  8. Geophysical data report of the Eastern Mediterranean Sea : RRS Shackleton cruises 3/72, 5/72, 1/74, July 28-Sept. 1, 1972, Oct. 4-Nov. 9,1972, May 9-June 29, 1974 (1974) University of Cambridge, Department of Geodesy and Geophysics, Cambridge, The UniversityGoogle Scholar
  9. Haagmans R, de Min E, Van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for stokes’ integral. Man Geod 18:227–241Google Scholar
  10. Hirt C, Rexer M, Claessens S, Rummel R (2017) The relation between degree-2160 spectral models of Earth’s gravitational and topographic potential – a guide on global correlation measures and their dependency on approximation effects. J Geod 91(10):1179–1205.  https://doi.org/10.1007/s00190-017-1016-z CrossRefGoogle Scholar
  11. Lequentrec-Lalancette MF, Rouxel D (2010) Comparison of a Marine Gravimetric Geoid and Global Satellite Model in the Atlantic Ocean. In: Lacoste-Francis H (ed) Proceedings of ESA living planet symposium, held on 28 June–2 July 2010 at Bergen in Norway. ISBN 978-92-9221-250-6. ESA SP-686, 2010, id.499Google Scholar
  12. Lequentrec-Lalancette MF, Rouxel D, Hernandez F, Schaeffer P (2003) Mapping of the free air anomaly using altimetric and marine gravity data. In: Tziavos (ed) 3rd Meeting of the International Gravity and Geoid Commission (IGGC), Gravity and Geoid 2002–GG2002, pp 353–357Google Scholar
  13. Lequentrec-Lalancette MF, Salaün C, Bonvalot S, Rouxel D, Bruinsma S (2016) Exploitation of marine gravity measurements of the mediterranean in the validation of global gravity field models. In: International Association of Geodesy Symposia, Springer, BerlinGoogle Scholar
  14. Mulet S, Rio MH, Bruinsma S (2012) Assessment of the preliminary GOCE geoid models accuracy for estimating the ocean mean dynamic topography. Mar Geod 35:314–336.  https://doi.org/10.1080/01490419.2012.718230 CrossRefGoogle Scholar
  15. Rio MH, Pascual A, Poulain PM, Menna M, Barcelo B, Tintoré J (2014) Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in-situ data. Ocean Sci 10(4):731.  https://doi.org/10.5194/osd-11-655-2014 CrossRefGoogle Scholar
  16. Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67.  https://doi.org/10.1126/science.1258213 CrossRefGoogle Scholar
  17. Sideris MG (2013) Geoid determination by FFT techniques. In: Sansò F, Sideris M (eds) Geoid determination. Lecture notes in earth system sciences, vol 110. Springer, BerlinGoogle Scholar
  18. Wong L, Gore R (1969) Accuracy of geoid heights from modied stokes kernels. Geophys J R Astron Soc 18:81–91CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • R. Barzaghi
    • 1
    Email author
  • D. Carrion
    • 1
  • G. S. Vergos
    • 2
  • I. N. Tziavos
    • 2
  • V. N. Grigoriadis
    • 2
  • D. A. Natsiopoulos
    • 2
  • S. Bruinsma
    • 3
  • F. Reinquin
    • 3
  • L. Seoane
    • 4
  • S. Bonvalot
    • 4
  • M. F. Lequentrec-Lalancette
    • 5
  • C. Salaün
    • 5
  • O. Andersen
    • 6
  • P. Knudsen
    • 6
  • A. Abulaitijiang
    • 6
  • M. H. Rio
    • 7
  1. 1.POLIMIMilanItaly
  2. 2.GravLab, Aristotle UniversityThessalonikiGreece
  3. 3.CNES – Space Geodesy OfficeToulouseFrance
  4. 4.OMP/GETToulouseFrance
  5. 5.Shom – French Hydrographic OfficeBrestFrance
  6. 6.DTU SpaceCopenhagenDenmark
  7. 7.CLSRamonville Saint AgneFrance

Personalised recommendations