Skip to main content

Combined Use of a Superconducting Gravimeter and Scintrex Gravimeters for Hydrological Correction of Precise Gravity Measurements: A Superhybrid Gravimetry

  • Conference paper
  • First Online:
International Symposium on Advancing Geodesy in a Changing World

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 149))

Abstract

A variant of hybrid gravimetry using both a superconducting gravimeter and Scintrex gravimeters is proposed. One of the main factors limiting the accuracy of time lapse gravity measurements is the instrumental drift of spring-type gravimeters. Running the Scintrex CG-5 gravimeter in the nighttime on the same pier as the superconducting gravimeter allows us to model the long-term behavior of the former and to remove efficiently the effect of irregular drift on measured gravity. Initial tests performed at Ishigakijima, Japan, proved that accuracy of a few μGal level can be achieved with this method. This will help us precisely correct for the effect of underground water on superconducting gravimeters with 2-dimensional local gravity survey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SG:

Superconducting gravimeter

References

  • Fores B, Champollion C, Le Moigne N, Chery J (2017) Impact of ambient temperature on spring-based relative gravimeter measurements. J Geod 91:269–277

    Article  Google Scholar 

  • Furuya M, Okubo S, Sun W, Tanaka Y, Oikawa J, Watanabe H, Maekawa T (2003) Spatiotemporal gravity changes at Miyakejima volcano, Japan: caldera collapse, explosive eruptions and magma movement. J Geophys Res 108:2219–2235

    Article  Google Scholar 

  • Gettings P, Chapman DS, Allis R (2008) Techniques, analysis, and noise in a salt Lake Valley 4D gravity experiment. Geophysics 73(6):WA71–WA82

    Article  Google Scholar 

  • Goodkind JM (1999) The superconducting gravimeter. Rev Sci Instrum 70:4131–4152

    Article  Google Scholar 

  • Hector B, Séguis L, Hinderer J, Cohard JM, Wubda M, Descloitres M, Benarrosh N, Boy JP (2015) Water storage changes as a marker for base flow generation processes in a tropical humid basement catchment (Benin): insights from hybrid gravimetry. Water Resour Res 51:8331–8361

    Article  Google Scholar 

  • Heki K, Kataoka T (2008) On the biannualy repeating slow slip events at the Ryukyu trench, Southwest Japan. J Geophys Res 113:B11402. https://doi.org/10.1029/2008JB005739

    Article  Google Scholar 

  • Hinderer J, Calvo M, Abdelfettah Y, Hector B, Riccardi U, Ferhat G, Bernard JD (2015) Monitoring of a geothermal reservoir by hybrid gravimetry; feasibility study applied to the Soultz-sous-Forêts and Rittershoffen sites in the Rhine graben. Geotherm Energy 3:16

    Article  Google Scholar 

  • Honma M, Oyama T, Hachikusa K, Sawada-Satoh S, Sebata K, Miyoshi M, Kameya O, Manabe S, Kawaguchi N, Sasao T, Kameno S, Fujisawa K, Shibata KM, Bushimata T, Miyaji T, Kobayashi H, Inoue M, Imai H, Araki H, Hanada H, Iwadate K, Kaneko Y, Kuji S, Sato K, Tsuruta S, Sakai S, Tamura Y, Horiai K, Hara T, Yokoyama K, Nakajima J, Kawai E, Okubo H, Osaki H, Koyama Y, Sekido M, Suzuyama T, Ichikawa R, Kondo T, Sakai K, Wada K, Harada N, Tougou N, Fujishita M, Shimizu R, Kawaguchi S, Yoshimura A, Nakamura M, Hasegawa W, Morisaki S, Kamohara R, Funaki T, Yamashita N, Watanabe T, Shimoikura T, Nishio M, Omodaka T, Okudaira A (2000) J-net galactic-plane survey of VLBI radio sources for VLBI exploration of radio astrometry (VERA). Publ Astron Soc Jpn 52:631–643

    Article  Google Scholar 

  • Ikeda H, Nawa K, Imanishi Y (2013) Refurbishment and performance of the superconducting gravimeter CT-36. J Geod Soc Jpn 59:25–36

    Google Scholar 

  • Imanishi Y, Kokubo K, Tatehata H (2006) Effect of underground water on gravity observation at Matsushiro, Japan. J Geodyn 41:221–226

    Article  Google Scholar 

  • Kroner C, Jahr T (2006) Hydrological experiments around the superconducting gravimeter at Moxa observatory. J Geodyn 41:268–275

    Article  Google Scholar 

  • Meurers B, Van Camp M, Petermans T (2007) Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach stations and application to earth tide analysis. J Geod 81:703–712

    Article  Google Scholar 

  • Nawa K, Suda N, Yamada I, Miyajima R, Okubo S (2009) Coseismic change and precipitation effect in temporal gravity variation at Inuyama, Japan: a case of the 2004 off the Kii peninsula earthquakes observed with a superconducting gravimeter. J Geodyn 48:1–5

    Article  Google Scholar 

  • Okubo S (2001) Investigating earthquakes and volcanic activities with hybrid gravimetry. Jishin J 31:47–58

    Google Scholar 

  • Reudink R, Klees R, Francis O, Kusche J, Schlesinger R, Shabanloui A, Sneeuw N, Timmen L (2014) High tilt susceptibility of the Scintrex CG-5 relative gravimeters. J Geod 88:617–622

    Article  Google Scholar 

  • Sugihara M (2009) Continuous gravity measurements for geothermal reservoir monitoring: –present status and a future scenario–. In: New Zealand Geothermal Workshop 2009 Proceedings, pp 14–19

    Google Scholar 

  • Van Camp M, Francis O (2007) Is the instrumental drift of superconducting gravimeters a linear or exponential function of time? J Geod 81:337–344

    Article  Google Scholar 

  • Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J Geophys Res 111:B10403. https://doi.org/10.1029/2006JB004405

    Article  Google Scholar 

Download references

Acknowledgements

We thank the VERA Project of National Astronomical Observatory of Japan for supporting our superconducting gravimeter observations at the VERA Ishigakijima station. Comments by two anonymous reviewers were helpful for improving the paper. This work was financially supported by JSPS KAKENHI Grant Numbers JP23340125, JP26289350 and JP26610139, and by the Cooperative Research Program of Earthquake Research Institute, The University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Imanishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imanishi, Y. et al. (2018). Combined Use of a Superconducting Gravimeter and Scintrex Gravimeters for Hydrological Correction of Precise Gravity Measurements: A Superhybrid Gravimetry. In: Freymueller, J., Sánchez, L. (eds) International Symposium on Advancing Geodesy in a Changing World. International Association of Geodesy Symposia, vol 149. Springer, Cham. https://doi.org/10.1007/1345_2018_31

Download citation

Publish with us

Policies and ethics