Combined Use of a Superconducting Gravimeter and Scintrex Gravimeters for Hydrological Correction of Precise Gravity Measurements: A Superhybrid Gravimetry

  • Yuichi ImanishiEmail author
  • Kazunari Nawa
  • Yoshiaki Tamura
  • Hiroshi Ikeda
  • Ryo Honda
  • Takashi Okuda
  • Makoto Okubo
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 149)


A variant of hybrid gravimetry using both a superconducting gravimeter and Scintrex gravimeters is proposed. One of the main factors limiting the accuracy of time lapse gravity measurements is the instrumental drift of spring-type gravimeters. Running the Scintrex CG-5 gravimeter in the nighttime on the same pier as the superconducting gravimeter allows us to model the long-term behavior of the former and to remove efficiently the effect of irregular drift on measured gravity. Initial tests performed at Ishigakijima, Japan, proved that accuracy of a few μGal level can be achieved with this method. This will help us precisely correct for the effect of underground water on superconducting gravimeters with 2-dimensional local gravity survey.


Hybrid gravimetry Scintrex gravimeter Superconducting gravimeter 



Superconducting gravimeter



We thank the VERA Project of National Astronomical Observatory of Japan for supporting our superconducting gravimeter observations at the VERA Ishigakijima station. Comments by two anonymous reviewers were helpful for improving the paper. This work was financially supported by JSPS KAKENHI Grant Numbers JP23340125, JP26289350 and JP26610139, and by the Cooperative Research Program of Earthquake Research Institute, The University of Tokyo.


  1. Fores B, Champollion C, Le Moigne N, Chery J (2017) Impact of ambient temperature on spring-based relative gravimeter measurements. J Geod 91:269–277CrossRefGoogle Scholar
  2. Furuya M, Okubo S, Sun W, Tanaka Y, Oikawa J, Watanabe H, Maekawa T (2003) Spatiotemporal gravity changes at Miyakejima volcano, Japan: caldera collapse, explosive eruptions and magma movement. J Geophys Res 108:2219–2235CrossRefGoogle Scholar
  3. Gettings P, Chapman DS, Allis R (2008) Techniques, analysis, and noise in a salt Lake Valley 4D gravity experiment. Geophysics 73(6):WA71–WA82CrossRefGoogle Scholar
  4. Goodkind JM (1999) The superconducting gravimeter. Rev Sci Instrum 70:4131–4152CrossRefGoogle Scholar
  5. Hector B, Séguis L, Hinderer J, Cohard JM, Wubda M, Descloitres M, Benarrosh N, Boy JP (2015) Water storage changes as a marker for base flow generation processes in a tropical humid basement catchment (Benin): insights from hybrid gravimetry. Water Resour Res 51:8331–8361CrossRefGoogle Scholar
  6. Heki K, Kataoka T (2008) On the biannualy repeating slow slip events at the Ryukyu trench, Southwest Japan. J Geophys Res 113:B11402. CrossRefGoogle Scholar
  7. Hinderer J, Calvo M, Abdelfettah Y, Hector B, Riccardi U, Ferhat G, Bernard JD (2015) Monitoring of a geothermal reservoir by hybrid gravimetry; feasibility study applied to the Soultz-sous-Forêts and Rittershoffen sites in the Rhine graben. Geotherm Energy 3:16CrossRefGoogle Scholar
  8. Honma M, Oyama T, Hachikusa K, Sawada-Satoh S, Sebata K, Miyoshi M, Kameya O, Manabe S, Kawaguchi N, Sasao T, Kameno S, Fujisawa K, Shibata KM, Bushimata T, Miyaji T, Kobayashi H, Inoue M, Imai H, Araki H, Hanada H, Iwadate K, Kaneko Y, Kuji S, Sato K, Tsuruta S, Sakai S, Tamura Y, Horiai K, Hara T, Yokoyama K, Nakajima J, Kawai E, Okubo H, Osaki H, Koyama Y, Sekido M, Suzuyama T, Ichikawa R, Kondo T, Sakai K, Wada K, Harada N, Tougou N, Fujishita M, Shimizu R, Kawaguchi S, Yoshimura A, Nakamura M, Hasegawa W, Morisaki S, Kamohara R, Funaki T, Yamashita N, Watanabe T, Shimoikura T, Nishio M, Omodaka T, Okudaira A (2000) J-net galactic-plane survey of VLBI radio sources for VLBI exploration of radio astrometry (VERA). Publ Astron Soc Jpn 52:631–643CrossRefGoogle Scholar
  9. Ikeda H, Nawa K, Imanishi Y (2013) Refurbishment and performance of the superconducting gravimeter CT-36. J Geod Soc Jpn 59:25–36Google Scholar
  10. Imanishi Y, Kokubo K, Tatehata H (2006) Effect of underground water on gravity observation at Matsushiro, Japan. J Geodyn 41:221–226CrossRefGoogle Scholar
  11. Kroner C, Jahr T (2006) Hydrological experiments around the superconducting gravimeter at Moxa observatory. J Geodyn 41:268–275CrossRefGoogle Scholar
  12. Meurers B, Van Camp M, Petermans T (2007) Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach stations and application to earth tide analysis. J Geod 81:703–712CrossRefGoogle Scholar
  13. Nawa K, Suda N, Yamada I, Miyajima R, Okubo S (2009) Coseismic change and precipitation effect in temporal gravity variation at Inuyama, Japan: a case of the 2004 off the Kii peninsula earthquakes observed with a superconducting gravimeter. J Geodyn 48:1–5CrossRefGoogle Scholar
  14. Okubo S (2001) Investigating earthquakes and volcanic activities with hybrid gravimetry. Jishin J 31:47–58Google Scholar
  15. Reudink R, Klees R, Francis O, Kusche J, Schlesinger R, Shabanloui A, Sneeuw N, Timmen L (2014) High tilt susceptibility of the Scintrex CG-5 relative gravimeters. J Geod 88:617–622CrossRefGoogle Scholar
  16. Sugihara M (2009) Continuous gravity measurements for geothermal reservoir monitoring: –present status and a future scenario–. In: New Zealand Geothermal Workshop 2009 Proceedings, pp 14–19Google Scholar
  17. Van Camp M, Francis O (2007) Is the instrumental drift of superconducting gravimeters a linear or exponential function of time? J Geod 81:337–344CrossRefGoogle Scholar
  18. Van Camp M, Vanclooster M, Crommen O, Petermans T, Verbeeck K, Meurers B, van Dam T, Dassargues A (2006) Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J Geophys Res 111:B10403. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yuichi Imanishi
    • 1
    Email author
  • Kazunari Nawa
    • 2
  • Yoshiaki Tamura
    • 3
  • Hiroshi Ikeda
    • 4
  • Ryo Honda
    • 5
  • Takashi Okuda
    • 6
  • Makoto Okubo
    • 7
  1. 1.Earthquake Research Institute, The University of TokyoBunkyoJapan
  2. 2.Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 7TsukubaJapan
  3. 3.Mizusawa VLBI Observatory, National Astronomical Observatory of JapanOshuJapan
  4. 4.Research Facility Center for Science and TechnologyUniversity of TsukubaTsukubaJapan
  5. 5.Mount Fuji Research Institute, Yamanashi Prefectural GovernmentFujiyoshidaJapan
  6. 6.Earthquake and Volcano Research Center, Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan
  7. 7.Natural Science Cluster, Kochi UniversityKochiJapan

Personalised recommendations