Skip to main content

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 147))

Abstract

A new Argentinean gravimetric geoid model named GEOIDEAR was developed using the remove-compute-restore technique and incorporating the GOCO05S satellite-only global geopotential model (GGM) together with 560,656 land and marine gravity measurements. Terrain corrections were calculated for all gravity observations using a combination of the SRTM_v4.1 and SRTM30_Plus_v10 digital elevation models. For the regions that lacked of gravity observations, the DTU13 gravity model was utilised. The residual gravity anomalies were gridded using the tensioned spline algorithm. The resultant gravity anomaly grid was applied in the Stokes’ integral using the spherical multi-band FFT approach and the deterministic kernel modification proposed by Wong and Gore. The accuracy of GEOIDEAR was assessed by comparing it with GPS-levelling derived geoid undulations at 1904 locations and the EGM2008 GGM. Results show that the new Argentinean geoid model has an accuracy of less than 10 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res Solid Earth (1978–2012), 112

    Google Scholar 

  • Andersen OB, Knudsen P, Kenyon SC, Factor JK, Holmes S (2013) The DTU13 global marine gravity field. Ocean surface topography science team meeting 2013. Boulder, USA

    Google Scholar 

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor JK, Ingalls S, Kim SH (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32:355–371

    Article  Google Scholar 

  • Cimbaro SR, LaurÍA EA, Piñón DA (2009) Adopción del nuevo marco de referencia geodésico nacional. Instituto Geográfico Militar, Buenos Aires

    Google Scholar 

  • Corchete V, Pacino MC (2007) The first high-resolution gravimetric geoid for Argentina: GAR. Phys Earth Planet Inter 161:177–183

    Article  Google Scholar 

  • Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first earth explorer Core mission. Earth gravity field from space—From sensors to earth sciences Springer

    Google Scholar 

  • Featherstone WE (2009) Only use ship-track gravity data with caution: a case-study around Australia. Aust J Earth Sci 56:195–199

    Article  Google Scholar 

  • Featherstone WE, Kirby JF (2000) The reduction of aliasing in gravity anomalies and geoid heights using digital terrain data. Geophys J Int 141:204–212

    Article  Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. The Ohio State University, Columbus

    Book  Google Scholar 

  • Forsberg R (1993) Modelling the fine-structure of the geoid: methods, data requirements and some results. Surv Geophys 14:403–418

    Article  Google Scholar 

  • Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J-M, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/groupe de Recherche de Gèodésie spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82:331–346

    Article  Google Scholar 

  • Haagmans R, De Min E, Van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral. Manuscr Geodaet 18:227–227

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman, San Francisco

    Google Scholar 

  • Hinze WJ, Aiken C, Brozena J, Coakley B, Dater D, Flanagan G, Forsberg R, Hildenbrand T, Keller GR, Kellogg J (2005) New standards for reducing gravity data: the north american gravity database. Geophysics 70:J25–J32

    Article  Google Scholar 

  • Iliffe JC, Ziebart M, Cross PA, Forsberg R, Strykowski G, Tscherning CC (2003) OSGM02: a new model for converting GPS-derived heights to local height datums in great britain and Ireland. Surv Rev 37:276–293

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe version 4. available from the CGIAR-CSI SRTM 90m Database (http://srtm. csi. cgiar. org)

    Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM 96. NASA, Greenbelt

    Google Scholar 

  • Mader K (1954) Die orthometrische Schwerekorrektion des Prazisions-Nivellements in den Hohen Tuaern. Osterreichischer Verein fur Vermessungswesen, Wien, p 1

    Google Scholar 

  • Mayer-Guerr T (2015) The combined satellite gravity field model GOCO05s. EGU General Assembly, Vienna

    Google Scholar 

  • Morelli C, Gantar C, Mcconnell RK, Szabo B, Uotila U (1972) The international gravity standardization net 1971 (IGSN 71). DTIC Document

    Google Scholar 

  • Moritz H (1968) On the use of the terrain correction in solving Molodensky’s problem. The Ohio State University, Columbus

    Google Scholar 

  • Moritz H (1980) Geodetic reference system 1980. J Geod 54:395–405

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133

    Article  Google Scholar 

  • Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31:362–371

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM 2008. EGU General Assembly, 13–18

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM 2008). J Geophys Res Solid Earth 117

    Google Scholar 

  • Sandwell DT, Muller RD, Smith WH, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346:65–67

    Article  Google Scholar 

  • Schwarz KP, Sideris MG, Forsberg R (1990) The use of FFT techniques in physical geodesy. Geophys J Int 100:485–514

    Article  Google Scholar 

  • Sideris MG, Forsberg R (1991) Testing the spherical FFT formula for the geoid over large regions. AGU spring meeting. Maryland, Baltimore

    Google Scholar 

  • Slater JA, Garvey G, Johnston C, Haase J, Heady B, Kroenung G, Little J (2006) The SRTM data “finishing” process and products. Photogramm Eng Remote Sens 72:237–247

    Article  Google Scholar 

  • Smith WHF, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55:293–305

    Article  Google Scholar 

  • Tocho C, Font G, Sideris MG (2007) A new high-precision gravimetric geoid model for Argentina. In: Tregoning P, Rizos C (eds) Dynamic planet: monitoring and understanding a dynamic planet with geodetic and oceanographic tools IAG Symposium Cairns, Australia 22–26 August, 2005. Springer, Berlin Heidelberg

    Google Scholar 

  • Tscherning CC (1985) GEOCOL-A FORTRAN-program for gravity field approximation by collocation. Technical Note, Geodaetisk Institut, 3

    Google Scholar 

  • Tscherning CC (1991) The use of optimal estimation for gross-error detection in databases of spatially correlated data. Bull Inform 68:79–89

    Google Scholar 

  • U.S. Department Of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center (2006) 2-minute Gridded Global Relief Data (ETOPO2v2) [Online]. Available: http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html

  • U.S. Geological Survey (1996) Global 30 arc-second elevation (GTOPO30). USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls

    Google Scholar 

  • Vaníček P, Huang J, Novák P, Pagiatakis S, Véronneau M, Martinec Z, Featherstone WE (1999) Determination of the boundary values for the Stokes–Helmert problem. J Geod 73:180–192

    Article  Google Scholar 

  • Wichiencharoen C (1982) The indirect effects on the computation of geoid undulations. The Ohio State University, Columbus

    Google Scholar 

  • Wong L, Gore R (1969) Accuracy of geoid heights from modified Stokes kernels. Geophys J Int 18:81–91

    Article  Google Scholar 

  • Zhang K (1997) An evaluation of FFT geoid determination techniques and their application to height determination using GPS in Australia. Doctor of Philosophy, Curtin University of Technology

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. C.C. Tscherning (R.I.P. 1942–2014) for providing the GRAVSOFT software and for all his help and support. We are also very grateful to the many individuals and organisations that supplied data for this study, and to the IGN’s Geodesy Division staff for their support and assistance over the past year. Finally, we would like to acknowledge three anonymous reviewers for their assertive and helpful comments and suggestions.

This research was partially funded by the Department of Foreign Affairs and Trade (DFAT) and RMIT, University Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Piñón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Piñón, D.A., Zhang, K., Wu, S., Cimbaro, S.R. (2017). A New Argentinean Gravimetric Geoid Model: GEOIDEAR. In: Freymueller, J.T., Sánchez, L. (eds) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia, vol 147. Springer, Cham. https://doi.org/10.1007/1345_2017_267

Download citation

Publish with us

Policies and ethics