Skip to main content

Ground-Satellite Comparisons of Time Variable Gravity: Results, Issues and On-Going Projects for the Null Test in Arid Regions

  • Conference paper
International Symposium on Earth and Environmental Sciences for Future Generations

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 147))

Abstract

This paper is devoted to the problem of the ground-satellite comparison of time-variable gravity. We first review the different methods used to validate satellite gravity observations (ground truth experiment) and point out possible issues. We first show results obtained in Europe where a moderate amplitude hydrological signal exists using both satellite (GRACE) and surface gravity measurements from the GGP (Global Geodynamics Project) network of superconducting gravimeters. We show also the nice agreement between ground and GRACE observations in Djougou (West Africa) where hydrological changes due to monsoon are important. We finally present on-going projects for the so-called ‘null test’ which is related to observations in a region with no (or very small) hydrological contribution to gravity. First results for the Sahara (Algeria) are reported and future missions in Egypt and Saudi Arabia briefly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M et al (2012) A comparison of GRACE-derived temporal gravity variations with observations of six European superconducting gravimeters. Geophys J Int 191:545–556

    Article  Google Scholar 

  • Al-Shahrani S et al (2015) Introduction to gravity calibration baseline between Jeddah and Taif in Saudi Arabia. In: Conference paper presented at IUGG General Assembly, Prague

    Google Scholar 

  • Boy J-P, Chao BF (2002) Time-variable gravity signal during the water impoundment of China’s Three-Gorges Reservoir. Geophys Res Lett 29(24):2200. doi:10.1029/2002GL016457

    Article  Google Scholar 

  • Boy J-P, Hinderer J, de Linage C (2012) Retrieval of large scale hydrological signal in Africa from GRACE time-variable gravity fields. Pure Appl Geophys 169(8):1373–1390. doi:10.1007/s00024-011-0416-x

    Article  Google Scholar 

  • Bruinsma S, Lemoine J-M, Biancale R et al (2010) CNES/GRGS 10-day gravity field models (release 02) and their evaluation. Adv Space Res 45(4):587–601. doi:10.1016/j.asr.2009.10.012

    Article  Google Scholar 

  • Crossley D, Hinderer J (2002) GGP ground truth for satellite gravity missions. Bull Inf Marées Terr 136:10735–10742

    Google Scholar 

  • Crossley D, Hinderer J (2005) Using SG arrays for hydrology in comparison with GRACE satellite data, with extension to seismic and volcanic hazards. Korean J Remote Sens 21(1):31–49

    Google Scholar 

  • Crossley D, Hinderer J, Llubes M, Florsch N (2003) The potential of ground gravity measurements to validate GRACE data. Adv Geosci 1:1–7

    Article  Google Scholar 

  • Crossley D, Hinderer J, Boy J-P (2004) Regional gravity variations in Europe from superconducting gravimeters. J Geodyn 38:325–342

    Article  Google Scholar 

  • Crossley D et al (2009) Validation of GRACE data using GGP stations from Europe and Asia. Bull Inf Mar Terr 145:11741–11750

    Google Scholar 

  • Crossley D et al (2012) A comparison of the gravity field over Central Europe from superconducting gravimeters, GRACE and global hydrological models, using EOF analysis. Geophys J Int 189:877–897. doi:10.1111/j.1365-246X.2012.05404.x

    Article  Google Scholar 

  • Crossley D et al (2014) Comment on: ‘The quest for a consistent signal in ground and GRACE gravity time series’, by Michel Van Camp etal. Geophys J Int 199(3):1811–1817

    Article  Google Scholar 

  • Davis J et al (2004) Climate-driven deformation of the solid earth from GRACE and GPS. Geophys Res Lett 31:L24605. doi:10.1029/2004GL021435

    Article  Google Scholar 

  • Dawod G, Alnaggar D (2000) Quality control measures for the Egyptian National Gravity Standardization Network (ENGSN97). In: Proceedings of the second international conference on civil engineering, Helwan University, Cairo, 1–3 April, pp 578–587

    Google Scholar 

  • De Linage C, Hinderer J, Rogister Y (2007) A search for the ratio between gravity variation and vertical displacement due to a surface load. Geophys J Int 171:986–994

    Article  Google Scholar 

  • Droogers P et al (2012) Water resources trends in Middle East and North Africa towards 2050. Hydrol Earth Syst Sci 16:3101–3114. doi:10.5194/hess-16-3101-2012

    Article  Google Scholar 

  • Genthon P, Hector B, Luxereau A, Hinderer J (2015) Groundwater recharge by Sahelian rivers-consequences for agricultural development: example from the lower Komadugu Yobe River (Eastern Niger, Lake Chad Basin). Environ Earth Sci 74(2):1291–1302

    Article  Google Scholar 

  • Hector B et al (2013) Gravity effect of water storage changes in a weathered hard-rock aquifer in West Africa: results from joint absolute gravity, hydrological monitoring and geophysical prospection. Geophys J Int 194(2):737–750. doi:10.1093/gji/ggt146

    Article  Google Scholar 

  • Hector B et al (2014) Hydro-gravimetry in West-Africa: first results from the Djougou (Benin) superconducting gravimeter. J Geodyn 80:34–49. doi:10.1016/j.jog.2014.04.003

    Article  Google Scholar 

  • Hinderer J et al (2006) Seasonal changes in the European gravity field from GRACE: a comparison with superconducting gravimeters and hydrology model predictions. J Geodyn 41:59–68

    Article  Google Scholar 

  • Hinderer J, Crossley D, Warburton R (2007) Superconducting gravimetry. In: Herring T, Schubert G (eds) Treatise on geophysics, vol 3: Geodesy. Elsevier, Amsterdam, pp 65–122

    Google Scholar 

  • Hinderer J et al (2012) Land water storage changes from ground and space geodesy: first results from the GHYRAF (Gravity and hydrology in Africa) experiment. Pure Appl Geophys 169(8):1391–1410. doi:10.1007/s00024-011-0417-9

    Article  Google Scholar 

  • Jiang Z et al (2011) Final report on the Seventh International comparison of absolute gravimeters (ICAG 2005). Metrologia 48:246–260

    Article  Google Scholar 

  • Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50:2679–2692. doi:10.1002/2013WR014633

    Article  Google Scholar 

  • Kanzow T et al (2005) Seasonal variation of ocean bottom pressure derived from gravity recovery and climate experiment (GRACE): local validation and global patterns. J Geophys Res 110:C09001. doi:10.1029/2004JC002772

    Article  Google Scholar 

  • King M et al (2006) Choice of optimal averaging radii for temporal GRACE gravity solutions, a comparison with GPS and satellite altimetry. Geophys J Int 166:1–11

    Article  Google Scholar 

  • Lemoine J-M et al (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39:1620–1629. doi:10.1016/j.asr.2007.03.062

    Article  Google Scholar 

  • Longuevergne L et al (2009) Local and global hydrological contributions to gravity variations observed in Strasbourg. J Geodyn 48(3–5):189–194

    Article  Google Scholar 

  • Longuevergne L et al (2012) GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage. Hydrol Earth Syst Sci 17:4817–4830. doi:10.5194/hess-17-4817-2013. www.hydrol-earth-syst-sci.net/17/4817/2013/

    Article  Google Scholar 

  • Loomis, B.D. and S.B. Luthcke (2014). Optimized signal denoising and adaptive estimation of seasonal timing and mass balance from simulated GRACE-like regional mass variations, Adv. In Adap. Data Anal., 6(1), doi:10.1142/S1793536914500034. Loomis BD, Luthcke, SB (2014) Optimized signal denoising and adaptive estimation of seasonal timing and mass balance from simulated GRACE-like regional mass variations. Adv Adap Data Anal 6(1). doi:10.1142/S1793536914500034

  • Luthcke SB et al (2013) Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J Glaciol 59(216):613–631

    Article  Google Scholar 

  • Neumeyer J et al (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geod 79(10–11):573–585. doi:10.1007/s00190-005-0014-8

    Article  Google Scholar 

  • Neumeyer J et al (2008) Analysis of gravity field variations derived from superconducting gravimeter recordings, the GRACE satellite and hydrological models at selected European sites. Earth Planets Space 60:505–518

    Article  Google Scholar 

  • Park J-H et al (2008) A comparison of in situ bottom pressure array measurements with GRACE estimates in the Kuroshio extension. Geophys Res Lett 35:L17601. doi:10.1029/2008GL034778

    Article  Google Scholar 

  • Pfeffer J et al (2011) Hydrological contribution to time – variable gravity: influence of the West African Monsoon in Southwest Niger. Geophys J Int 184(2):661–672

    Article  Google Scholar 

  • Ramillien G, Famiglietti J, Wahr J (2008) Detection of continental hydrology and glaciology signals from GRACE: a review. Surv Geophys 29(4):361–374. doi:10.1007/s10712-008-9048-9

    Article  Google Scholar 

  • Ramillien G, Frappart F, Seoane L (2014) Application of the regional water mass variations from GRACE satellite Gravimetry to large-scale water management in Africa. Remote Sens 2014(6):7379–7405. doi:10.3390/rs6087379

    Article  Google Scholar 

  • Reichle RH et al (2011) Assessment and enhancement of MERRA land surface hydrology estimates. J Clim 24:6322–6338

    Article  Google Scholar 

  • Remini B, Achour B, Kechad R (2010) Foggara en Algérie: un patrimoine hydraulique mondial. J Water Sci 23(2):105–117

    Google Scholar 

  • Rietbroek R et al (2006) Comparison of in situ bottom pressure data with GRACE gravimetry in the Crozet-Kerguelen region. Geophys Res Lett 33:L21601. doi:10.1029/2006GL027452

    Article  Google Scholar 

  • Rodell M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Article  Google Scholar 

  • Shamsudduha M, Taylor RG, Longuevergne L (2012) Monitoring groundwater storage changes in the highly seasonal humid tropics: validation of GRACE measurements in the Bengal Basin. Water Resour Res 48:W02508. doi:10.1029/2011WR010993

    Article  Google Scholar 

  • Swenson S et al (2006) A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys Res Lett 33:L16401. doi:10.1029/2006GL026962

    Article  Google Scholar 

  • Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res 113:B08410. doi:10.1029/2007JB005338

    Article  Google Scholar 

  • Tregoning P et al (2009) Glacial isostatic adjustment and nonstationary signals observed by GRACE. J Geophys Res 114:B06406. doi:10.1029/2008JB006161

    Google Scholar 

  • Van Camp M et al (2014) The quest for a consistent signal in ground and GRACE gravity time series. Geophys J Int 199(3):1811–1817

    Article  Google Scholar 

  • van Dam T, Wahr J, Lavallée D (2007) A comparison of annual vertical crustal displacements from GPS and gravity recovery and climate experiment (GRACE) over Europe. J Geophys Res 112:B03404. doi:10.1029/2006JB004335

    Google Scholar 

  • Voss KA et al (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49. doi:10.1002/wrcr.20078

  • Wahr J, Molenaar M, Bryan F (1998) Time-variability of the earths gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30230

    Article  Google Scholar 

  • Wang X, et al (2011) Gravity recovery and climate experiment (GRACE) detection of water storage changes in the three Gorges reservoir of China and comparison with in situ measurements. Water Resour Res 47:W12502. doi:10.1029/2011WR010534

    Google Scholar 

  • Watkins M et al (2001) Time and space validation of the new gravity missions, EOS, AGU, 82 (47), Fall Meet. Suppl

    Google Scholar 

  • Weise A et al (2009) Terrestrial gravity observations with superconducting gravimeters for validation of satellite-derived (GRACE) gravity variations. J Geodyn 48(3–5):325–330

    Article  Google Scholar 

  • Weise A et al (2012) Tackling mass redistribution phenomena by time-dependent GRACE and terrestrial gravity observations. J Geodyn 59–60:82–91

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by ECGS (European Center for Geodynamics and Seismology) (project title: Ground truth in gravity: a null test experiment in the Sahara to validate GRACE) and by French-Egyptian Imhotep program (project title: Continuous Gravity Observations Around Northern Western Part of Lake Nasser, Aswan, Egypt). This research was supported by CNES (Centre National des Etudes Spatiales), France (TOSCA grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hinderer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hinderer, J. et al. (2017). Ground-Satellite Comparisons of Time Variable Gravity: Results, Issues and On-Going Projects for the Null Test in Arid Regions. In: Freymueller, J.T., Sánchez, L. (eds) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia, vol 147. Springer, Cham. https://doi.org/10.1007/1345_2017_266

Download citation

Publish with us

Policies and ethics