Advertisement

Simulation of VLBI Observations to Determine a Global TRF for GGOS

  • Susanne Glaser
  • Dimitrios Ampatzidis
  • Rolf König
  • Tobias Nilsson
  • Robert Heinkelmann
  • Frank Flechtner
  • Harald Schuh
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 147)

Abstract

In this study, we present a global terrestrial reference frame (TRF) from simulated very long baseline interferometry (VLBI) observations. In the time span from 2008 until 2014, 695 standard VLBI rapid turnaround (R1, R4) 24 h-sessions were simulated using a network of 28 globally distributed stations. Within the software VieVS@GFZ, we apply different measurement noise at the observation level and investigate the impact on the TRF and on the Earth rotation parameters. We find that the effect of varying only the noise applied within the simulation is not proportional to the changes in the estimates and their uncertainties. For instance, increasing the noise level from 15 ps to 300 ps increases the uncertainty of the station positions by a factor of 3.5, of station velocities by 5, of polar motion by 3.4, and of UT1-UTC by 1.5. A comparison with the VLBI-TRF derived from real observations within the same time span shows that the solution simulated with a noise level based on the formal errors of real observations is still too optimistic.

Keywords

GGOS Simulation TRF VLBI 

Notes

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for the financial support within the project “GGOS-SIM” (SCHU 1103/8-1) and the IVS (Nothnagel et al. 2015) for providing the data used within this study. The valuable comments of three anonymous reviewers are highly appreciated.

References

  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4CrossRefGoogle Scholar
  2. Bizouard C, Gambis D (2011) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2008. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf Google Scholar
  3. Boehm J, Wresnik J, Pany A (2006) Simulation of wet zenith delays and clocks. Technical report, IVS Memorandum 2006-013v03. ftp://ivscc.gsfc.nasa.gov/pub/memos/ivs-2006-013v03.pdf
  4. Boehm J, Boehm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The New Vienna VLBI software VieVS. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet Earth. International Association of Geodesy Symposia, vol 136. Springer, Berlin/Heidelberg, pp 1007–1011. doi:10.1007/978-3-642-20338-1_126CrossRefGoogle Scholar
  5. Collilieux X, Altamimi Z, Argus D, Boucher C, Dermanis A, Haines B, Herring T, Kreemer C, Lemoine F, Ma C, MacMillan D, Mäkinen J, Métivier L, Ries J, Teferle F, Wu X (2014) External evaluation of the terrestrial reference frame: report of the task force of the IAG sub-commission 1.2. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet. International Association of Geodesy Symposia, vol 139, Springer, Berlin/Heidelberg, pp 197–202. doi:10.1007/978-3-642-37222-3_25Google Scholar
  6. Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Böckmann S, Bolotin S, Charlot P, Collioud A, Engelhardt G, Gipson J, Gontier AM, Heinkelmann R, Kurdubov S, Lambert S, Lytvyn S, MacMillan DS, Malkin Z, Nothnagel A, Ojha R, Skurikhina E, Sokolova J, Souchay J, Sovers OJ, Tesmer V, Titov O, Wang G, Zharov V (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150(2):58. http://stacks.iop.org/1538-3881/150/i=2/a=58 CrossRefGoogle Scholar
  7. Gross R, Beutler G, Plag HP (2009) Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin/Heidelberg, pp 209–224. doi:10.1007/978-3-642-02687-4_7CrossRefGoogle Scholar
  8. Herring TA, Davis JL, Shapiro II (1990) Geodesy by radio interferometry: the application of Kalman filtering to the analysis of very long baseline interferometry data. J Geophys Res Solid Earth 95(B8):12,561–12,581. doi:10.1029/JB095iB08p12561CrossRefGoogle Scholar
  9. Morel L, Willis P (2005) Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Adv Space Res 36(3):358–368. http://dx.doi.org/10.1016/j.asr.2005.05.113 CrossRefGoogle Scholar
  10. Nilsson T, Haas R (2010) Impact of atmospheric turbulence on geodetic very long baseline interferometry. J Geophys Res Solid Earth 115(B3):b03407. doi:10.1029/2009JB006579CrossRefGoogle Scholar
  11. Nilsson T, Soja B, Karbon M, Heinkelmann R, Schuh H (2015) Application of Kalman filtering in VLBI data analysis. Earth Planets Space 67(1):1–9. doi:10.1186/s40623-015-0307-yCrossRefGoogle Scholar
  12. Nothnagel A, International VLBI Service for Geodesy and Astrometry (IVS) et al (2015) The IVS data input to ITRF2014. International VLBI Service for Geodesy and Astrometry, GFZ Data Services. doi:10.5880/GFZ.1.1.2015.002Google Scholar
  13. Pany A, Boehm J, MacMillan D, Schuh H, Nilsson T, Wresnik J (2011) Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J Geod 85(1):39–50. doi:10.1007/s00190-010-0415-1CrossRefGoogle Scholar
  14. Petit G, Luzum B (eds) (2010) IERS Conventions (2010). IERS Technical note, vol 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, GermanyGoogle Scholar
  15. Rummel R (2000) Global integrated geodetic and geodynamic observing system (GIGGOS). In: Towards an integrated global geodetic observing system (IGGOS). International Association of Geodesy Symposia, vol 120. Springer, Berlin/Heidelberg, pp 253–260. doi:10.1007/978-3-642-59745-9_53Google Scholar
  16. Schuh H, Behrend D (2012) VLBI: a fascinating technique for geodesy and astrometry. J Geodyn 61:68–80. doi:http://dx.doi.org/10.1016/j.jog.2012.07.007
  17. Schuh H, König R, Ampatzidis D, Glaser S, Flechtner F, Heinkelmann R, Nilsson TJ (2016) GGOS-SIM: simulation of the reference frame for the global geodetic observing system. Springer, Berlin/Heidelberg, pp 1–6. doi:10.1007/1345_2015_217Google Scholar
  18. Tatarski VI (1961) Wave propagation in a turbulent medium. Translated by R.A. Silverman. McGraw-Hill, New York, 285 pp. Science 134(3475):324–325. doi:10.1126/science.134.3475.324-bGoogle Scholar
  19. Treuhaft RN, Lanyi G (1987) The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci 22(2):251–265CrossRefGoogle Scholar
  20. Zhu S, Reigber C, König R (2004) Integrated adjustment of CHAMP, GRACE, and GPS data. J Geod 78(1–2):103–108. doi:10.1007/s00190-004-0379-0Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Susanne Glaser
    • 1
  • Dimitrios Ampatzidis
    • 2
  • Rolf König
    • 2
  • Tobias Nilsson
    • 3
  • Robert Heinkelmann
    • 3
  • Frank Flechtner
    • 2
  • Harald Schuh
    • 1
    • 3
  1. 1.Institute of Geodesy and Geoinformation ScienceTechnische Universität BerlinBerlinGermany
  2. 2.GFZ German Research Centre for GeosciencesWesslingGermany
  3. 3.GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations