Skip to main content

Effects of Meteorological Input Data on the VLBI Station Coordinates, Network Scale, and EOP

  • Conference paper
International Symposium on Earth and Environmental Sciences for Future Generations

Abstract

The requirement for the quantification of sea level rise and other global change phenomena are precise and stable reference frames. To accord with these science driven requirements, GGOS, the Global Geodetic Observing System, aims for reference frame accuracy of 1 mm, stability of 0.1 mm/year, and Earth Orientation Parameters accuracy of ∼ 30 μas. At this level of precision a variety of otherwise neglected effects has to be taken into account. In our article we investigate whether the use of meteorological data for the analysis of space geodetic techniques could be one of these effects that need to be considered. The article moves forward in finding an optimized meteorological data set in order to provide results at the required accuracy level. At the Very Long Baseline Interferometry (VLBI) stations of the International VLBI Service for Geodesy and Astrometry meteorological data are observed and are customarily applied for analyses. Observed data can contain outliers and inhomogeneities that have to be appropriately accounted for. We test the two blind models GPT and GPT2 as a replacement for locally observed data. We find that both cause small seasonal signals in the celestial pole offsets with an amplitude of ∼ 15 μas. We also assess whether the mean values as obtained by extrapolation of surface or near-surface data of ERA-Interim reanalysis product or of the World Meteorological Organization can be used as reference values for homogenization of the observed meteorological data. In particular at sites where the model surface height and the height of the space geodetic reference point differ significantly, very large differences were found. Hence, we cannot recommend shifting the mean value of the observed data to the mean values derived by hypsometrically adjusted surface data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ecmwf.int/.

  2. 2.

    https://www.wmo.int/.

  3. 3.

    http://www.usno.navy.mil/USNO/earth-orientation/eo-products.

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85:457–473

    Article  Google Scholar 

  • Berg H (1948) Allgemeine Meteorologie. Dümmler, Bonn

    Google Scholar 

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406

    Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81:679–683

    Article  Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H, Nothnagel A (2008) Validation of mean temperature values as provided by GPT, IVS memorandum 2008-003v02. ftp://ivscc.gsfc.nasa.gov/pub/memos/ivs-2008-003v02.pdf

  • Böhm J, Urquhart L, Steigenberger P et al (2012) A priori gradients in the analysis of space geodetic observations. IAG Symposium, vol. 138, pp 105–109

    Google Scholar 

  • Böhm J, Schuh H (eds) (2013) Atmospheric effects in space geodesy. Springer Atmospheric Sciences. Springer/Dordrecht, Heidelberg/New York/London

    Google Scholar 

  • Davis JL, Herring TA, Shapiro II et al (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Fey AL, Gordon D, Jacobs CS et al (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150:58

    Article  Google Scholar 

  • Gao L, Bernhardt M, Schulz K (2012) Elevation correction of ERA-Interim temperature data in complex terrain. Hydrol Earth Syst Sci 16:4661–4673

    Article  Google Scholar 

  • Heinkelmann R, Böhm J, Schuh H (2005) Homogenization of surface pressure recordings and its impact on long-term series of VLBI tropospheric parameters. In: Vennebusch M, Nothnagel A (eds) Proceedings of the 17th working meeting on European VLBI for geodesy and astrometry, pp 74–78

    Google Scholar 

  • Heinkelmann R, Böhm J, Schuh H et al (2007) Combination of long time-series of troposphere zenith delays observed by VLBI. J Geod 81:483–501

    Article  Google Scholar 

  • Heinkelmann R, Böhm J, Schuh H (2008) Effects of surface pressure and temperature on the VLBI reference frames. In: Finkelstein A, Behrend D (eds) IVS 2008 general meeting proceedings, pp 188–192

    Google Scholar 

  • Heinkelmann R, Böhm J, Schuh H, Tesmer V (2009) The effect of meteorological input data on the VLBI reference frames. IAG Symposium, vol. 134, pp 245–251

    Google Scholar 

  • Heinkelmann R, Böhm J, Bolotin S et al (2011) VLBI-derived troposphere parameters during CONT08. J Geod 85:377–393

    Article  Google Scholar 

  • Lagler K, Schindelegger M, Böhm J et al (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Let 40:1069–1073

    Article  Google Scholar 

  • Nafisi V, Madzak M, Böhm J et al (2012) Ray-traced tropospheric delays in VLBI analysis. Radio Sci 47:RS2020

    Article  Google Scholar 

  • Nilsson T, Soja B, Karbon M, Heinkelmann R, Schuh H (2015) Application of Kalman filtering in VLBI data analysis. Earth, Planets Space 67:136–144

    Article  Google Scholar 

  • Nothnagel A (2008) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83:787–792

    Article  Google Scholar 

  • Nothnagel A et al (2015) The IVS data input to ITRF2014. International VLBI Service for Geodesy and Astrometry. GFZ Data Services. http://doi.org/10.5880/GFZ.1.1.2015.002

    Google Scholar 

  • Petit G, Luzum B (eds) (2010) IERS conventions (2010). IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main

    Google Scholar 

  • Petrov L, Boy J-P (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109:B03405

    Article  Google Scholar 

  • Ray J, Morrison M, Hilla S et al (2005) Geodetic sensitivity to surface meteorological data: 24-h and 6-h observing sessions. GPS Sol 9:12–20

    Article  Google Scholar 

  • Richter B, Engels J, Grafarend E (2010) Transformation of amplitudes and frequencies of precession and nutation of the earth’s rotation vector to amplitudes and frequencies of diurnal polar motion. J Geod 84:1–18

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: Henriksen SW, Mancini A, Chovitz BH (eds) The use of artificial satellites for geodesy. Geophysical Monograph Series. vol 15. American Geophysical Union (AGU), pp 247–251

    Google Scholar 

  • Steigenberger P, Böhm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83:943–951

    Article  Google Scholar 

  • Tregoning P, Herring TA (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Let 33:L23303

    Article  Google Scholar 

Download references

Acknowledgements

We thank three anonymous reviewers for the suggested changes that greatly improved the manuscript. First author acknowledges support through DFG project HE 5937/2-1 “ECORAS”. We acknowledge the IVS, ECMWF, and WMO for provision of publicly available data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Heinkelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Heinkelmann, R. et al. (2016). Effects of Meteorological Input Data on the VLBI Station Coordinates, Network Scale, and EOP. In: Freymueller, J.T., Sánchez, L. (eds) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia, vol 147. Springer, Cham. https://doi.org/10.1007/1345_2016_243

Download citation

Publish with us

Policies and ethics