Advertisement

Atmospheric Precipitable Water in Somma-Vesuvius Area During Extreme Weather Events from Ground-Based GPS Measurements

  • U. Tammaro
  • U. Riccardi
  • F. Masson
  • P. Capuano
  • J. P. Boy
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 147)

Abstract

In this paper, we analyze the tropospheric delay observed on some ground-based CGPS stations in a dense small regional network and its time evolution during extreme weather conditions. In particular, we studied two severe weather events occurring in the Campanian Region (Italy) on October 12, 2012 and December 2, 2014, reaching 42 and 28 mm rainfall during about 1 h at Naples (MAFE) and Gragnano (GRAG) stations respectively. The main concern of this study is the retrieval of the precipitable water (PW) from co-located GPS and meteorological stations. We investigate the correlation between PW and rain amount at ground level. We analyse phase residuals for each visible GPS satellite using sky plots of the phase residuals along the GPS satellites tracks, showing that the two phenomena are shown in the phase residual plots. Moreover, we compare PW data retrieved from observed meteorological data and from models (GPT2 and ECMWF), evidencing that there is a need for co-located CGPS and weather stations to improve the assessment of water content in the troposphere.

Keywords

Precipitable water Tropospheric delay GPT2 ECMWF GPS 

Notes

Acknowledgments

We are grateful to Prof A. Mazzarella and Dr. R. Viola who provided us with meteorological data from MAFE station, and Regione Campania government for meteorological data from GRAG station. We thank Giuseppe Brandi for field activities. We wish to thank the Associate Editor, Jeff Freymueller, and anonymous reviewers for the useful comments and suggestions, which improved the manuscript.

References

  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy 85(8):457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Askne J, Nordius H (1987) Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci 22(3):379–386CrossRefGoogle Scholar
  3. Benevides P, Catalao J, Miranda PMA (2015) On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Nat Hazards Earth Syst Sci 15:2605–2616. doi: 10.5194/nhess-15-2605-2015 CrossRefGoogle Scholar
  4. Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386CrossRefGoogle Scholar
  5. Boy J-P, Chao BF (2005) Precise evaluation of atmospheric loading effects on Earth’s time-variable gravity field. J Geophys Res 110, B08412. doi: 10.1029/2002JB002333 CrossRefGoogle Scholar
  6. Champollion C, Masson F, Van Baelen J, Walpersdorf A, Chéry J, Doerflinger E (2004) GPS monitoring of the tropospheric water vapor distribution and variation during the 9 September 2002 torrential precipitation episode in the Cévennes (southern France). J Geophys Res 109, D24102. doi: 10.1029/2004JD004897 CrossRefGoogle Scholar
  7. Davis JL, Herring TA, Shapiro II, Rogers A, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607CrossRefGoogle Scholar
  8. Dee D et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  9. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geodesy 83:191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  10. Duan J, Bevis M, Fang P, Bock Y, Chiswell SR, Businger S, Rocken C, Solheim FS, Van Hove T, Ware R, McClusky S, Herring TA, King RW (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. J Appl Meteorol 35:830–838CrossRefGoogle Scholar
  11. Haase J, Ge M, Vedel H, Calais E (2003) Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J Appl Meteorol 42:1547–1568CrossRefGoogle Scholar
  12. Herring TA, Davis JL, Shapiro II (1990) Geodesy by radio interferometry: the application of Kalman filtering to the analysis of very long baseline interferometry data. J Geophys Res 95(B8):12561–12581CrossRefGoogle Scholar
  13. Herring TA, King RW, McClusky SC (2010) GAMIT reference manual. Release 10.4. Massachusetts Institute of Technology, Cambridge. http://www-gpsg.mit.edu/~simon/gtgk/ Google Scholar
  14. Lagler K, Schindelegger M, Böhm J, Krásná H, Nilsson T (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40(6):1069–1073. doi: 10.1002/grl.50288 CrossRefGoogle Scholar
  15. Principe C, Rosi M, Santacroce R, Sbrana A (1987) Explanatory notes to the geological map. In: Santacroce R (ed) Somma-Vesuvius, Quaderni de “La Ricerca Scientifica”, CNR, 114 (Progetto finalizzato Geodinamica, Monografie finali, 8), pp 11–52. ISSN: 0556-9664. CNR, RomeGoogle Scholar
  16. Saastamoinen J (1972) Atmospheric corrections for the troposphere and stratosphere in radio ranging of satellites. In: Henriksen SW, Mancini A, Chovitz BH (eds) The use of artificial satellites for geodesy. Geophys. Monogr. Ser., vol 15. Amer. Geophys. Union, Washington, DC, pp 247–251Google Scholar
  17. Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Geod 107:13–34. doi: 10.1007/BF02521844 CrossRefGoogle Scholar
  18. Solheim FS, Vivekanandan J, Ware RH, Rocken C (1999) Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates. J Geophys Res 104:9663–9670. doi: 10.1029/1999JD900095 CrossRefGoogle Scholar
  19. Song DS, Grejner-Brzezinska DA (2009) Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event. Earth Planets Space 61:1117–1125CrossRefGoogle Scholar
  20. Tammaro U, De Martino P, Obrizzo F, Brandi G, D’Alessandro A, Dolce M, Malaspina S, Serio C, Pingue F (2013) Somma Vesuvius volcano: ground deformations from CGPS observations (2001–2012). Ann Geophys 56(4):S0456. doi: 10.4401/ag-6462 Google Scholar
  21. Wessel P, Smith WH (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79(47):579CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • U. Tammaro
    • 1
  • U. Riccardi
    • 2
  • F. Masson
    • 3
  • P. Capuano
    • 4
  • J. P. Boy
    • 3
  1. 1.Istituto Nazionale di Geofisica e Vulcanologia, Sezione “Osservatorio Vesuviano”NaplesItaly
  2. 2.Dipartimento di Scienze della Terra, dell’ambiente e delle Risorse (DiSTAR)University “Federico II” of NaplesNaplesItaly
  3. 3.IPGS/EOST Université de Strasbourg/CNRSStrasbourgFrance
  4. 4.Department of Physics “E.R. Caianiello”University of SalernoSalernoItaly

Personalised recommendations