Skip to main content

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 147))

Abstract

The contribution of the diurnal atmospheric S1 tide to Earth’s wobble is assessed by tidally analyzing hourly polar motion (PM) estimates from approximately 25 years of geodetic Very Long Baseline Interferometry (VLBI) observations. Special emphasis is placed on the dependency of S1 estimates on various settings in the a priori delay model and on the method of time series analysis in post-processing. The considered VLBI solutions differ with regard to the inclusion/exclusion of weak network geometries and the choice of a priori geophysical corrections such as thermal antenna deformation. Prograde PM coefficients \(\text{A}^{+} + i\text{B}^{+}\) of S1 are on the level of 9 + i10 μas (microarcseconds) for all solutions and none of the changes in the processing strategies perturbs this estimate beyond the twofold S1 standard deviation (\(\sim\) 2.6 μas). An independent validation of the deduced harmonics against excitation estimates from atmosphere-ocean models shows that space geodetic and geophysical accounts of the S1 effect in PM are still inconsistent by about 10 μas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artz T, Tesmer S, Nothnagel A (2011) Assessment of periodic sub-diurnal Earth rotation variations at tidal frequencies through transformation of VLBI normal equation systems. J Geod 85:565–584

    Article  Google Scholar 

  • Behrend D (2013) Coordinating center report. In: Baver KD, Behrend D, Armstrong K (eds) International VLBI Service for Geodesy and Astrometry 2012 Annual Report, NASA/TP-2013-217511, pp 55–57

    Google Scholar 

  • Böhm S (2012) Tidal excitation of Earth rotation observed by VLBI and GNSS. Geowissenschaftliche Mitteilungen, Heft 90. Vienna University of Technology, Vienna, 167 pp

    Google Scholar 

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. doi:10.1029/2005JB003629

    Google Scholar 

  • Böhm S, Brzeziński A, Schuh H (2012a) Complex demodulation in VLBI estimation of high frequency Earth rotation components. J Geodyn 62:56–68

    Google Scholar 

  • Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012b) The New Vienna VLBI Software VieVS. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for Planet Earth. Springer Berlin Heidelberg, pp 1007–1011

    Google Scholar 

  • Brzeziński A (2011) Diurnal excitation of Earth rotation estimated from recent geophysical models. In: Capitaine N (ed) Proc Journées 2010 Systèmes de Référence Spatio-temporels, Observatoire de Paris, pp 131–136

    Google Scholar 

  • Brzeziński A, Ponte R, Ali A (2004) Nontidal oceanic excitation of nutation and diurnal/semidiurnal polar motion revisited. J Geophys Res 109:B11407. doi:10.1029/2004JB003054

    Google Scholar 

  • Brzeziński A, Dobslaw H, Thomas M, Ślusarczyk Ł (2012) Subdiurnal atmospheric and oceanic excitation of Earth rotation estimated from 3-hourly AAM and OAM data. Geophysical research abstracts 14, EGU2012-10530, EGU General Assembly 2012, Vienna, 22–27 April

    Google Scholar 

  • Capitaine N, Wallace P, Chapront J (2003) Expressions for IAU 2000 precession quantities. Astron Astrophys 412:567–586

    Article  Google Scholar 

  • Dermanis A, Mueller I (1978) Earth rotation and network geometry optimization for very long baseline interferometers. Bull Geod 52:131–158

    Article  Google Scholar 

  • Desai S (2002) Observing the pole tide with satellite altimetry. J Geophys Res Oceans 107:3186. doi:10.1029/2001JC001224

    Article  Google Scholar 

  • Fey A et al (2015) The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. Astron J 150:58. doi:10.1088/0004-6256/150/2/58

    Article  Google Scholar 

  • Gipson J (1996) Very long baseline interferometry determination of neglected tidal terms in high-frequency Earth orientation variation. J Geophys Res 101:28051–28064

    Article  Google Scholar 

  • Krásná H, Böhm J, Plank L, Nilsson T, Schuh H (2014) Atmospheric Effects on VLBI-Derived Terrestrial and Celestial Reference Frames. In: Rizos C, Willis P (eds) Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia. Springer Berlin Heidelberg, pp 203–208

    Google Scholar 

  • Lagler K, Schindelegger M, Böhm J, Krásná H, Nilsson T (2013) GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40:1069–1073

    Article  Google Scholar 

  • Lott F, de Viron O, Viterbo P, Vial F (2008) Axial atmospheric angular momentum budget at diurnal and subdiurnal periodicities. J Atmos Sci 65:156–171

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. J Ocean Dyn 56:394–415

    Article  Google Scholar 

  • Malkin Z (2009) On comparison of the Earth orientation parameters obtained from different VLBI networks and observing programs. J Geod 83:547–556

    Article  Google Scholar 

  • Mathews P, Herring T, Buffett B (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys Res 107:B42068

    Article  Google Scholar 

  • Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83:787–792

    Article  Google Scholar 

  • Petit G, Luzum B (eds) (2010) IERS conventions (2010). Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 179 pp

    Google Scholar 

  • Ray R, Egbert G (2004) The global S1 Tide. J Phys Oceanogr 34:1922–1935

    Article  Google Scholar 

  • Rienecker M, Suarez M, Gelaro R et al (2011) MERRA: NASA’s Modern-Era Retrospective Analysis for Research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan HL et al (2010) The NCEP Climate Forecast System Reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Schindelegger M (2014) Atmosphere-induced short period variations of Earth rotation. Geowissenschaftliche Mitteilungen, Heft 96. Vienna University of Technology, Vienna, 152 pp

    Google Scholar 

  • Schindelegger M, Einšpigel D, Salstein D, Böhm J (2016) The global S1 tide in Earth’s nutation. Surv Geophys 37:643–680

    Article  Google Scholar 

  • Schuh H, Böhm J (2013) Very Long Baselines Interferometry for Geodesy and Astronomy. In: Xu G (ed) Sciences of Geodesy–II: Innovations and Future Developments. Springer Berlin Heidelberg, pp 339–376

    Chapter  Google Scholar 

  • Simon J, Bretagnon P, Chapront J, Chapront-Touze M, Francou G, Laskar J (1994) Numerical expressions for precession formulae and mean elements for the Moon and the planets. Astron Astrophys 282:663–683

    Google Scholar 

  • Wijaya D, Böhm J, Karbon M, Krasna H, and Schuh H (2013) Atmospheric Pressure Loading. In: Böhm J, Schuh H (eds) Atmospheric Effects in Space Geodesy. Springer Berlin Heidelberg, pp 137–157

    Chapter  Google Scholar 

Download references

Acknowledgements

We kindly thank John Gipson for providing his tidal estimates, and we also appreciate the recommendations from three anonymous reviewers. Financial support for this study was made available by the Austrian Science Fund (FWF) under project ASPIRE (I1479-N29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiia Girdiuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Girdiuk, A., Schindelegger, M., Madzak, M., Böhm, J. (2016). Detection of the Atmospheric S1Tide in VLBI Polar Motion Time Series. In: Freymueller, J.T., Sánchez, L. (eds) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia, vol 147. Springer, Cham. https://doi.org/10.1007/1345_2016_234

Download citation

Publish with us

Policies and ethics