Advertisement

Tidal Spectroscopy from a Long Record of Superconducting Gravimeters in Strasbourg (France)

  • Marta Calvo
  • Séverine Rosat
  • Jacques Hinderer
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 147)

Abstract

We present a comparison in the various tidal bands, between two different spectral analyses of long gravimetric time series. The first one is performed using a long gravity series recorded by superconducting gravimeters at J9 Observatory (Strasbourg) and the second one uses a theoretical series of the same length, almost 28 years, computed for the same location according to the Hartmann and Wenzel tidal potential development.

Long term gravity records are of great interest when performing spectral analysis. The length of the data series allows us to retrieve small amplitude waves in the major tidal groups (e.g. tides generated by the third-degree potential, as for example 3MO1 in the diurnal, 3MO2 in the semi-diurnal, and MN3 in the ter-diurnal frequency band, with amplitudes respectively of 2.29, 5.97 and 1.44 nm/s2), to separate waves close in frequency, as the waves NO1 and NO1X which need more than 18 year data length to be separated and finally to detect very low-frequency signals such as the monthly, semiannual or annual waves. Several examples for each of these cases are shown in our series.

Keywords

Detailed spectral analyses Earth tides Superconducting gravimeter Tidal potential of degree 3 Tidal potential of degree 4 

References

  1. Amalvict M, Hinderer J, Gegout P, Rosat S, Crossley D (2002) On the use of AG data to calibrate SG instruments in the GGP network: example of Strasbourg - J9. Bull Inform Marees Terr 135:10621–10626Google Scholar
  2. Boy JP, Llubes M, Ray R, Hinderer J, Florsch N (2006) Validation of long-periodoceanic tidal models with superconducting gravimeters. J Geodyn 41:112–118CrossRefGoogle Scholar
  3. Calvo M, Hinderer J, Rosat S, Legros H, Boy J-P, Ducarme B, Zürn W (2014a) Time stability of spring and superconducting gravimeters through the analysis of very long gravity records. J Geodyn 80:20–33Google Scholar
  4. Calvo M, Rosat S, Hinderer J, Legros H, Boy J-P, Riccardi U (2014b) Study of the time stability of tides using a long term (1973–2011) gravity record at Strasbourg, France. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet, vol 139. Springer, Berlin, pp 377–381. doi: 10.1007/978-3-64237222-3_50
  5. Dehant V, Defraigne P, Wahr J (1999) Tides for a convective earth. J Geophys Res 104(B1):1035–1058CrossRefGoogle Scholar
  6. Doodson AT, Warburg HD (1941) Admiralty manual of tides. H.M. Stationary Office, LondonGoogle Scholar
  7. Ducarme B (2011) Determination of the main Lunar waves generated by the third degree tidal potential and validity of the corresponding body tides models. J Geod. doi: 10.1007/s00190-011-0492-9 Google Scholar
  8. Ducarme B, Venedikov AP, Arnoso J (2004) Determination of the long period tidalwaves in the GGP superconducting gravity data. J Geophys Res 38(3–5):307–324Google Scholar
  9. Hartmann T, Wenzel H-G (1995) The HW95 tidal potential catalogue. Geophys Res Lett 22(24):3553–3556Google Scholar
  10. Hinderer J, Boy JO, Legros H (1998) A 3000 day registration of the superconducting gravimeter GWR T005 in Strasbourg (France) In: Ducarme B, Pâquet P (eds) Proceedings 13th international symposium on earth tides, Brussels, pp 617–624Google Scholar
  11. Sato T, Ooe M, Nawa K, Shibuya K, Tamura Y, Kaminuma K (1997) Long-period tides observed with a superconducting gravimeter at Syowa Station, Antarctica, and their implication to global ocean tide modeling. Phys Earth Planet Inter 103(1–2):39–53Google Scholar
  12. Tamura Y (1987) A harmonic development of the tide-generating potential. Bull Inform Marees Terr 99:6813–6855Google Scholar
  13. Van Camp M, Wenzel H-G, Schott P, Vauterin P, Francis O (2000) Accurate transfer function determination for superconducting gravimeters. Geophys Res Lett 27(1):37–40CrossRefGoogle Scholar
  14. Van Camp M, Williams SD, Francis O (2005) Uncertainly of absolute gravity measurements. J Geophys Res Solid Earth 110(B5). doi: 10.1029/2004JB003497
  15. Wenzel H-G (1996) The nanogal software: earth tide data processing package ETERNA 3.30. Bull Inform Marees Terr 124:9425–9439Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marta Calvo
    • 1
    • 2
  • Séverine Rosat
    • 1
  • Jacques Hinderer
    • 1
  1. 1.Institut de Physique du Globe de Strasbourg, IPGS – UMR 7516, CNRS/Université de Strasbourg (EOST)Strasbourg CedexFrance
  2. 2.Observatorio Geofísico Central, Instituto Geográfico Nacional (IGN)MadridSpain

Personalised recommendations