Skip to main content

Impact of Numerical Weather Models on Gravity Field Analysis

  • Conference paper
  • First Online:
IAG 150 Years

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 143))

  • 2460 Accesses

Abstract

Atmospheric pressure variations are one of the major sources of gravity perturbations. Due to the high variability of the atmospheric masses and the sparse sampling of these by GRACE the signals alias into the observations taken by the satellites. The determination of accurate atmospheric gravity field coefficients (AGC) is indispensable for the elimination of these signals. For the determination of AGC it is state of the art to use high resolution Numerical Weather Prediction (NWP) models which take into account the time-variable three-dimensional distribution of the atmospheric mass. By subtracting the gravity spherical harmonics of a long term atmospheric mean field from the ones of the instantaneous atmosphere, the residual gravity spherical harmonic series is obtained. It describes the deviation of the actual gravity field from the mean gravity field due to atmospheric mass variations. NWP models are not perfect as they can show significant differences to in situ measurements. Further these models evolve and change throughout time, which can lead to changes in the pressure data and therefore in the AGC. In this study several aspects of NWP models are investigated, and the influence they have on the determination of the AGC is discussed. We present a strategy that was developed for dealing with changes in the NWP models, and compare our products to those of the GRACE Atmosphere and Ocean Dealiasing level-1B products and those provided by the Groupe de Recherche de Géodésie Spatiale (GRGS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boy JP, Chao BF (2005) Precise evaluation of atmospheric loading effects on earths time-variable gravity field. J Geophys Res 110:B08412. doi:10.1029/2002JB002333

    Article  Google Scholar 

  • Boy JP, Gegout P, Hinderer J (2001) Reduction of surface gravity data from global atmospheric pressure loading. Geophys J Int 149:534–545

    Article  Google Scholar 

  • Dash SK, Mohandas S (2005) Comparative study of different orographic representations with respect to the Indian summer monsoon simulation. Acta Geophys Polon 53(3):325

    Google Scholar 

  • Dobslaw H, Flechtner F, Bergmann-Wolf I, Dahle C, Dill R, Esselborn S, Sasgen I, Thomas M (2013) Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B rl05. J Geophys Res Ocean 118(7):3704–3711. doi:10.1002/jgrc.20271

    Article  Google Scholar 

  • Duan J, Shum CK, Guo J, Huang Z (2012) Uncovered spurious jumps in the grace atmospheric de-aliasing data: potential contamination of grace observed mass change. Geophys J Int 191(1):83–87. doi:10.1111/j.1365-246X.2012.05640.x

    Article  Google Scholar 

  • Fagiolini E, Zenner L, Flechtner F, Gruber T, Schwarz G, Trautmann T, Wickert J (2007) The sensitivity of satellite gravity field determination to uncertainites in atmospheric models. Joint GSTM/SPP Kolloquium, Potsdam. http://www.massentransporte.de/fileadmin/20071015?17?Potsdam/di180002fiagolini.pdf

  • Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys Space Phys 10(3):761–797

    Article  Google Scholar 

  • Flechtner F, Dobslaw H (2013) AOD1B product description document for product release 05 (Rev. 4.0, Sept 9, 2013). Tech Rep

    Google Scholar 

  • Forootan E, Didova O, Kusche J, Locher A (2013) Comparisons of atmospheric data and reduction methods for the analysis of satellite gravimetry observations. J Geophys Res Solid Earth

    Google Scholar 

  • Gegout P (2009) Background models used in geodetic data processing

    Google Scholar 

  • Gegout P, Biancale R, Soudarin L (2011) Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere. J Geod 85(10):661–677. doi:10.1007/s00190-011-0474-y

    Article  Google Scholar 

  • Han SC, Jekeli C, Shum C (2004) Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean grace gravity field. J Geophys Res Solid Earth (1978–2012) 109(B4)

    Google Scholar 

  • Karbon M (2013) Atmospheric effects on gravity space missions. Geowissenschaftliche Mitteilungen, vol 94/2013, Department of Geodesy and Geoinformation of the Vienna University of Technology

    Google Scholar 

  • Karbon M, Böhm J, Wijaya D, Schuh H (2013) Atmospheric effects on gravity space missions, Atmospheric effects in space geodesy. Springer, Berlin/Heidelberg, pp 159–180. doi:10.1007/978-3-642-36932-2_5

    Book  Google Scholar 

  • Kurtenbach E, Mayer-Gürr T, Eicker A (2009) Deriving daily snapshots of the Earth’s gravity field from GRACE data using Kalman filtering. Geophys Res Lett 36(17). doi: 10.1029/2009GL039564

    Google Scholar 

  • Miller M, Palmer T, Swinbank R (1989) Parameterization and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteorol Atmos Phys 40(1-3):84–109. doi:10.1007/BF01027469

    Article  Google Scholar 

  • Navarra A, Stern W, Miyakoda K (1994) Reduction of the Gibbs oscillation in spectral model simulations. J Climate 7(8):1169–1183

    Article  Google Scholar 

  • Neumeyer J, Hagedorn J, Leitloff J, Schmidt T (2004) Gravity reduction with three-dimensional atmospheric pressure data for precise ground gravity measurements. J Geodyn 38:437–450

    Article  Google Scholar 

  • Phillips NA (1960) Numerical weather prediction. Advances in computers, vol 1. Elsevier, pp 43–90. doi:10.1016/S0065-2458(08)60606-3

  • Plag H, Gross R, Rothacher M (2009) Global geodetic observing system for geohazards and global change. Geosciences 9:96–103

    Google Scholar 

  • Rabier F, Jrvinen H, Klinker E, Mahfouf JF, Simmons A (2000) The ECMWF operational implementation of four-dimensional variational assimilation. I: experimental results with simplified physics. Q J Roy Meteorol Soc 126(564):1143–1170. doi:10.1002/qj.49712656415

    Article  Google Scholar 

  • Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer K, Schwintzer P, Zhu SY (2005) An earth gravity field model complete to degree and order 150 from grace: eigen-grace02s. J Geodyn 39(1):1–10

    Article  Google Scholar 

  • Rowlands D, Luthcke S, Klosko S, Lemoine F, Chinn D, McCarthy J, Cox C, Anderson O (2005) Resolving mass flux at high spatial and temporal resolution using grace intersatellite measurements. Geophys Res Lett 32(4):L04,310

    Article  Google Scholar 

  • Rutt IC, Thuburn J, Staniforth A (2006) A variational method for orographic filtering in NWP and climate models. Q J Roy Meteorol Soc 132(619):1795. doi:10.1256/qj.05.133

    Article  Google Scholar 

  • Schulz W (1954) Tabellen für die Normatmosphäre nach DIN 5450 bis 20 km Höhe. Braunschweig [Flughafen] Dt. Forschungsanstalt f. Luftfahrt e.V

    Google Scholar 

  • Shengjie G (2006) GPS radio occultation and the role of atmospheric pressure on spaceborne gravity estimation over Antarctica. PhD thesis, Ohio State University

    Google Scholar 

  • Stockdale TN, Anderson DLT, Alves JOS, Balmaseda MA (1998) Global seasonal rainfall forecasts using a coupled ocean-atmosphere model. Nature 392:370–373. doi:10.1038/32861

    Article  Google Scholar 

  • Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(L09607):4–9

    Google Scholar 

  • Trenberth KE, Smith L (2005) The mass of the atmosphere: a constraint on global analyses. J Climate 18(6)

    Google Scholar 

  • van Dam T, Altamimi Z, Collilieux X, Ray J (2010)Topographically induced height errors in predicted atmospheric loading effects. J Geophys Res Solid Earth (1978–2012) 115(B7)

    Google Scholar 

  • Velicogna I, Wahr J, Van den Dool H (2001) Can surface pressure be used to remove atmospheric contributions from GRACE data with sufficient accuracy to recover hydrological signals? J Geophys Res 106(B8):16415–16434

    Article  Google Scholar 

  • White P (2000) IFS Documentation Part III: Dynamics and Numerical Procedures (CY21R4). Meteorol Bull M1.6/4

    Google Scholar 

  • Zenner L, Gruber T, Jäggi A, Beutler G (2010) Propagation of atmospheric model errors to gravity potential harmonics – impact on GRACE De-aliasing. Geophys J Int 182(2):797–807

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Austrian Science Fund (FWF) for supporting the project GGOS Atmosphere (P20902), and the ECMWF for providing the meteorological data. Special thanks go to Bruno Meurers from the University of Vienna for providing the in situ data at Conrad Observatory and to Pascal Gegout from the Géosciences Environnement Toulouse for providing the de-aliasing data. We also want to acknowledge the reviewers who helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Karbon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Karbon, M., Böhm, J., Fagiolini, E., Flechtner, F., Schuh, H. (2015). Impact of Numerical Weather Models on Gravity Field Analysis. In: Rizos, C., Willis, P. (eds) IAG 150 Years. International Association of Geodesy Symposia, vol 143. Springer, Cham. https://doi.org/10.1007/1345_2015_88

Download citation

Publish with us

Policies and ethics