IGFS 2014 pp 63-70 | Cite as

Evaluation of GOCE-Based Global Geopotential Models Versus EGM2008 and GPS/Levelling Data in Northwest of Turkey

  • N. B. AvsarEmail author
  • B. Erol
  • S. H. Kutoglu
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 144)


The Gravity field and steady-state Ocean Circulation Explorer (GOCE), reached the end of its mission in mid-October 2013, was a milestone in Earth’s gravity field determination. Several Global Geopotential Models (GGMs) have been published based on the data collected during the roughly 4-year mission of GOCE. This study focuses on evaluation of the contribution of GOCE data for the representation of gravity field with significant improved accuracy in Turkish territory. The evaluation is based on the consecutive releases as well as the releases generated by different computation strategies of GOCE-based models. In the study, a total of 7 GOCE-based models (EIGEN_6C3stat, JYY_GOCE02S, ITG-GOCE02, GO_CONS_GCF_2_TIM_Release 1, 2, 3, and 4) were assessed and the results were compared with the performance of EGM2008. The accuracy of GGMs was analyzed using the reference Global Positioning System (GPS)/levelling network of the case study for Bursa located in the northwest of the Anatolian peninsula. In the analysis, 433 GPS/levelling benchmarks after removing detected blunders were used for evaluation of the global geoid models. The validation results show the superior performance of the high resolution global combined model EIGEN_6C3stat among the evaluated models. Its fit with GPS/levelling-derived geoid heights in the study area is at the level of 9.1 cm in terms of the standard deviation of the differences.


EGM2008 Geoid Global Geopotential Model GOCE GPS/levelling 


  1. Amjadiparvar B, Rangelova EV, Sideris MG (2013) North American height datums and their offsets: evaluation of the GOCE-based global geopotential models in Canada and the USA. J Appl Geodesy 7:191–203. doi: 10.1515/jag-2012-0033 Google Scholar
  2. Amos MJ, Featherstone WE (2003) Comparisons of recent global geopotential models with terrestrial gravity field data over New Zealandand Australia. Geomatics Res Australas 79:1–20Google Scholar
  3. BUSKI (2009) Bursa Water and Sewerage Administration General Directorate (BUSKI) M3 Project, Geodetic Report Vol. 1, Bursa (in Turkish)Google Scholar
  4. Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. In: Beutler GB, Drinkwater MR, Rummel R, von Steiger R (eds) Earth gravity field from space – from sensors to Earth sciences. In the Space Sciences Series of ISSI, vol 18. Kluwer Academic Publishers, Dordrecht pp 419–432Google Scholar
  5. Erol B (2012) Spectral evaluation of Earth geopotential models and an experiment on its regional improvement for geoid modelling. J Earth Syst Sci 121(3):823–835. doi: 10.1007/s12040-012-0190-x CrossRefGoogle Scholar
  6. Erol B, Erol S (2012) GNSS in practical determination of regional heights. In: Jin S (ed) Global navigation satellite systems: signal, theory and applications. ISBN 978-953-307-843-4, doi: 10.5772/28820
  7. Erol B, Sideris MG, Celik RN (2009) Comparison of global geopotential models from the CHAMP and GRACE missions for regional geoid modelling in Turkey. Stud Geophys Geo 53(4):419–441. doi: 10.1007/s11200-009-0032-8 CrossRefGoogle Scholar
  8. Featherstone WE (2002) Expected contributions of dedicated satellite gravity field missions to regional geoid determination with some examples from Australia. J Geospat Eng 4(1):1–19Google Scholar
  9. Förste C, Bruinsma S, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine JM, Neumayer KH, Biancale R, Barthelmes F, König R (2013) EIGEN-6C3stat -the newest high resolution global combined gravity field model based on the 4th release of the direct approach. Accessed 2 Feb 2014
  10. Fotopoulos G (2003) An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data. Dissertation, University of CalgaryGoogle Scholar
  11. Godah W, Krynski J (2011) Validation of GOCE geopotential models over Poland using the EGM2008 and GPS/levelling data. Geoinf Issues 3(1):5–17. ISSN 1689-6440Google Scholar
  12. Godah W, Krynski J (2013) Evaluation of recent GOCE geopotential models over the area of Poland. Acta Geodyn Geomater 10:379–386. doi: 10.13168/AGG.2013.0037
  13. Guimaraes G, Matos A, Blitzkow D (2012) An evaluation of recent GOCE geopotential models in Brazil. J Geodetic Sci 2(2):144–155. doi: 10.2478/v10156-011-0033-8 CrossRefGoogle Scholar
  14. Hirt C (2011) Assessment of EGM2008 over Germany using accurate quasigeoid heights from vertical deflections, GCG05 and GPS/levelling. Zeitschrift fuer Geodaesie, Geoinformation und Landmanagement (zfv) 136(3):138–149Google Scholar
  15. Hofmann-Wellenhof B, Moritz H (2005) Physical Geodesy. Springer Wien, New YorkGoogle Scholar
  16. ICGEM Calculation Service (2014) International Centre for Global Earth Models (ICGEM), Calculation Service. Accessed 27 Jan 2014
  17. ICGEM Global Gravity Field Models (2014) International Centre for Global Earth Models (ICGEM), Global Gravity Field Models. Accessed 4 Feb 2014
  18. Janak J, Pitonak M (2011) Comparison and testing of GOCE global gravity models in Central Europe. J Geodetic Sci 1(4):333–347. doi: 10.2478/v10156-011-0010-2 CrossRefGoogle Scholar
  19. Kiliçoğlu A, Direnç A, Simav M, Lenk O, Aktuğ B, Yildiz H (2009) Evaluation of the Earth Gravitational Model 2008 in Turkey. Newton’s Bull, Special Issue: “External Quality Evaluation Reports of EGM08”, vol 4, pp 164–171. ISSN 1810–8555Google Scholar
  20. Kiliçoğlu A, Direnç A, Yildiz H, Bölme M, Aktuğ B, Simav M, Lenk O (2011) Regional gravimetric quasi-geoid model and transformation surface to national height system for Turkey (THG-09). Stud Geophys Geo 55(4):557–578. doi: 10.1007/s11200-010-9023-z CrossRefGoogle Scholar
  21. Kotsakis C, Katsambalos K (2010) Quality analysis of global geopotential models at 1542 GPS/levelling benchmarks over the Hellenic Mainland. Surv Rev 42(318):327–344. doi: 10.1179/003962610X12747001420500 CrossRefGoogle Scholar
  22. Merry CL (2007) Evaluation of global geopotential models in determining the quasi-geoid for Southern Africa. Surv Rev 39(305):180–192. doi: 10.1179/003962607X165159 CrossRefGoogle Scholar
  23. Pail R, Goiginger H, Mayrhofer R, Schuh W, Brockmann JM, Krasbutter I, Hoeck E, Fecher T (2010) GOCE gravity field model derived from orbit and gradiometry data applying the time-wise method. Presented at the ESA Living Planet Symposium 2010, Bergen, June 27–July 2, BergenGoogle Scholar
  24. Pail R, Bruinsma SL, Migliaccio F, Foerste C, Goiginger H, Schuh WD, Hoeck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sanso F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. doi: 10.1007/s00190-011-0467-x CrossRefGoogle Scholar
  25. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res Solid Earth 117(B4):4406CrossRefGoogle Scholar
  26. Rapp RH (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J Geod 71:282–289CrossRefGoogle Scholar
  27. Schall J, Eicker A, Kusche J (2014) The ITG-Goce02 gravity field model from GOCE orbit and gradiometer data based on the short arc approach. J Geod 88:403–409. doi: 10.1007/s00190-014-0691-2 CrossRefGoogle Scholar
  28. Smith DA (1998) There is no such thing as The EGM96 geoid: subtle points on the use of a global geopotential model. IGeS Bull 8:17–28. International Geoid Service, MilanGoogle Scholar
  29. Sprlak M, Gerlach G, Pettersen BR (2012) Validation of GOCE global gravity field models using terrestrial gravity data in Norway. J Geodetic Sci 2(2):134–143. doi: 10.2478/v10156-011-0030-y CrossRefGoogle Scholar
  30. Ustun A, Abbak RA (2010) On global and regional spectral evaluation of global geopotential models. J Geophys Eng 7:369–379. doi: 10.1088/1742-2132/7/4/003 CrossRefGoogle Scholar
  31. Voigt C, Rülke A, Denker H, Ihde J, Liebsch G (2010) Validation of GOCE products by terrestrial data sets in Germany. Geotechnologien Sci Rep 17:106–111. doi: 10.2312/ Google Scholar
  32. Yi W (2012) An alternative computation of a gravity field model from GOCE. Adv Space Res 50(3):371–384. ISSN 0273–1177, doi: 10.1016/j.asr.2012.04.018
  33. Yi W, Rummel R, Gruber T (2013) Gravity field contribution analysis of GOCE gravitational gradient components. Stud Geophys Geo 57(2):174–202. ISSN 1573–1626, doi: 10.1007/s11200-011-1178-8

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Geomatics EngineeringBulent Ecevit UniversityZonguldakTurkey
  2. 2.Department of Geomatics EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations