Advertisement

IGFS 2014 pp 101-109 | Cite as

Evaluation of GOCE/GRACE GGMs Over Attica and Thessaloniki, Greece, and Wo Determination for Height System Unification

  • G. S. VergosEmail author
  • V. D. Andritsanos
  • V. N. Grigoriadis
  • V. Pagounis
  • I. N. Tziavos
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 144)

Abstract

Within the frame of the Elevation project, recently acquired collocated GPS/Leveling observations over trigonometric benchmarks (BMs) have been used for the evaluation of the recent GOCE/GRACE Global Geopotential Models (GGMs) and the unification of the Greek Local Vertical Datum (LVD). To this extent all available satellite-only and combined GOCE/GRACE GGMs were evaluated to conclude on the possible improvement brought by GOCE in the determination of the geoid over Greece. At a second stage, the present work focuses on the determination of the zero-level geopotential value W 0 LVD for the Greek LVD. The estimation of W 0 LVD was carried out using a least squares adjustment of Helmert orthometric heights, surface gravity disturbances and geopotential values computed from EGM2008 and GOCE/GRACE GGMs over the available GPS/Levelling BMs. Moreover, given that the BMs used belong to two distinct areas, i.e., one over Attica and another in Thessaloniki, the W 0 LVD determination was carried out for each region separately, to conclude on the possible biases of the Hellenic LVD itself. From the evaluation of the GOCE/GRACE models it was concluded that the latest releases provide a significant, compared to EGM2008, improvement in the comparisons with the GPS/Levelling data, by as much as 3 cm, in terms of the standard deviation. Furthermore, the W 0 LVD determined for the Greek LVD indicates a bias of about −4.95 m2/s2 compared to the conventional value of 62,636,856.0 m2/s2.

Keywords

Global geopotential models GOCE GPS/levelling BMs LVD Validation Zero-level geopotential 

Notes

Acknowledgements

The authors wish to acknowledge the funding provided for this work, in the frame of the “Elevation” project, by the E.U. (European Social Fund) and Hellenic national funds under the Operational Program “Education and Lifelong Learning 2007–2013”, action “Archimedes III – Funding of research groups in T.E.I.”.

References

  1. Albertella A, Savcenko R, Janjić T, Rummel R, Bosch W, Schröter J (2012) High resolution dynamic ocean topography in the southern ocean from GOCE. Geophys J Int 190:922–930CrossRefGoogle Scholar
  2. Anastasiou D, Gaifillia D, Katsdourou A, Kolyvaki E, Papanikolaou X, Gianniou M, Vergos GS, Pagounis V (2013) First validation of the Hellenic vertical datum as a prerequisite for the efficient disaster and resources management: the “Elevation” project. FIG Commission 3 “Spatial Information, Informal Development, Property and Housing”, December 11–12, Athens, GreeceGoogle Scholar
  3. Bruinsma SL et al (2010) GOCE gravity field recovery by means of the direct numerical method. Presented at the ESA Living Planet Symposium, Bergen, Norway, 27 June–2 JulyGoogle Scholar
  4. Bruinsma S et al (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40(14):3607–3612. doi: 10.1002/grl.50716 CrossRefGoogle Scholar
  5. IERS Conventions (2010). In: Petit G, Luzum B(eds) IERS technical note 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, p 179. ISBN 3-89888-989-6Google Scholar
  6. Ekman M (1989) Impacts of geodynamic phenomena on systems for height and gravity. Bull Geod 63(3):281–296CrossRefGoogle Scholar
  7. Förste C et al (2008) EIGEN-GL05C – a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophys Res Abst 10:EGU2008-A-03426, SRef-ID: 16077962/gra/EGU2008-A-03426Google Scholar
  8. Förste C et al (2011) EIGEN-6 – a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophys Res Abst 13:EGU2011-3242-2 (EGU General Assembly)Google Scholar
  9. Förste C et al (2012) A preliminary update of the direct approach GOCE processing and a new release of EIGEN-6C. Presented at the AGU Fall Meeting 3–7 Dec 2012 San Francisco, Abstract No. G31B-0923Google Scholar
  10. Fuchs MJ, Bouman J, Broerse T, Visser P, Vermeersen B (2013) Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry. J Geophys Res 118(10):5712–5721CrossRefGoogle Scholar
  11. Goiginger H et al (2011) The combined satellite-only global gravity field model GOCO02S; presented at the 2011 General Assembly of the European Geosciences Union, Vienna, Austria, April 4–8Google Scholar
  12. Grigoriadis VN, Kotsakis C, Tziavos IN, Vergos GS (2014) Estimation of the geopotential value Wo for the local vertical datum of continental Greece using EGM08 and GPS/leveling data. IAG Symp 141:249–255Google Scholar
  13. Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85(11):845–860CrossRefGoogle Scholar
  14. Gruber T, Gerlach C, Haagmans R (2012) Intercontinental height datum connection with GOCE and GPS-levelling data. J Geod Sci 2(4):270–280. doi: 10.2478/v10156-012-0001-y Google Scholar
  15. Hayden T, Amjadiparvar B, Rangelova E, Sideris MG (2012) Evaluation of W0 in Canada using tide gauges and GOCE gravity field models. J Geod Sci 2(4):257–269. doi: 10.2478/v10156-012-0008-4 Google Scholar
  16. Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman, San Francisco, p 895Google Scholar
  17. Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasi geoid heights. J Geod 85(10):723–740CrossRefGoogle Scholar
  18. Knudsen P, Bingham R, Andersen OB, Rio M-H (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85(11):861–879CrossRefGoogle Scholar
  19. Mayer-Gürr T et al (2012) The new combined satellite only model GOCO03S. Presented at the IAG Commission 2 “gravity, geoid and height systems GGHS2012” conference, October 9th–12th, Venice, ItalyGoogle Scholar
  20. Moritz H (1992) Geodetic reference system 1980. Bull Geod 66:187–192CrossRefGoogle Scholar
  21. Pail R et al (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi: 10.1029/2010GL044906 CrossRefGoogle Scholar
  22. Pail R et al (2011) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843CrossRefGoogle Scholar
  23. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res 117:B04406. doi: 10.1029/2011JB008916 CrossRefGoogle Scholar
  24. Reguzzoni M, Sampietro D, Sans F (2013) Global Moho from the combination of the crust 2.0 model and GOCE data. Geophys J Int 195(1):222–237CrossRefGoogle Scholar
  25. Sánchez L (2009) Strategy to establish a global vertical reference system. In: Drewes H (ed) Geodetic reference systems. International association of geodesy symposia, vol 134. Springer, Switzerland, pp 273–278. doi: 10.1007/978-3-642-00860-3_42 Google Scholar
  26. Sánchez L, Dayoub N, Čunderlík R, Minarechová Z, Mikula K, Vatrt V, Vojtíšková M, Šíma M (2014) W0 estimates in the frame of the GGOS working group on vertical datum standardisation. IAG Symp 141:203–210Google Scholar
  27. Schall J, Eicker A, Kusche J (2014) The ITG-Goce02 gravity field model from GOCE orbit and gradiometer data based on the short arc approach. J Geod 88(4):403–409. doi: 10.1007/s00190-014-0691-2 CrossRefGoogle Scholar
  28. Šprlák M, Gerlach C, Pettersen PR (2012) Validation of GOCE global gravity field models using terrestrial gravity data in Norway. J Geod Sci 2(2):134–143Google Scholar
  29. Tenzer R, Dayoub N, Abdalla A (2013) Analysis of a relative offset between vertical datums at the North and South Islands of New Zealand. Appl Geomat 5:133–145CrossRefGoogle Scholar
  30. Tocho C, Vergos GS, Pacino MC (2014) Evaluation of the latest GOCE/GRACE derived global geopotential models over Argentina with collocated GPS/levelling observations. IAG Symp 141:75–83Google Scholar
  31. Tziavos IN, Vergos GS, Grigoriadis VN (2010) Investigation of topographic reductions and aliasing effects to gravity and the geoid over Greece based on various digital terrain models. Surv Geophys 31(3):23–67. doi: 10.1007/s10712-009-9085-z CrossRefGoogle Scholar
  32. Tziavos IN, Vergos GS, Mertikas SP, Daskalakis A, Grigoriadis VN, Tripolitsiotis A (2013) The contribution of local gravimetric geoid models to the calibration of satellite altimetry data and an outlook~of the latest GOCE GGM performance in GAVDOS. Adv Space Res 51(8):1502–1522. doi: 10.1016/j.asr.2012.06.013 CrossRefGoogle Scholar
  33. Tziavos IN, Vergos GS, Grigoriadis VN, Tzanou EA, Natsiopoulos DA (in press) Validation of GOCE/GRACE satellite only and combined global geopotential models over Greece, in the frame of the GOCESeaComb Project. Accepted for Publication to the IAG Scientific Assembly 2013, International Association of Geodesy Symposia Vol. 143, Springer International Publishing SwitzerlandGoogle Scholar
  34. Vergos GS, Grigoriadis VN, Tziavos IN, Kotsakis C (2014) Evaluation of GOCE/GRACE global geopotential models over Greece with collocated GPS/levelling observations and local gravity data. IAG Symp 141:85–92Google Scholar
  35. Yi W, Rummel R, Gruber T (2013) Gravity field contribution analysis of GOCE gravitational gradient components. Stud Geophys Geod 57(2):174–202. doi: 10.1007/s11200-011-1178-8 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • G. S. Vergos
    • 1
    Email author
  • V. D. Andritsanos
    • 2
  • V. N. Grigoriadis
    • 1
  • V. Pagounis
    • 2
  • I. N. Tziavos
    • 1
  1. 1.Department of Geodesy and SurveyingAristotle University ofThessalonikiThessalonikiGreece
  2. 2.Department of Civil Engineering and Surveying and Geoinformatics EngineeringTechnological and Educational Institute of AthensAthensGreece

Personalised recommendations