IGFS 2014 pp 199-207 | Cite as

Comparative Study of the Uniform and Variable Moho Density Contrast in the Vening Meinesz-Moritz’s Isostatic Scheme for the Gravimetric Moho Recovery

  • Robert TenzerEmail author
  • Mohammad Bagherbandi
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 144)


In gravimetric methods for a determination of the Moho geometry, the constant value of the Moho density contract is often adopted. Results of gravimetric and seismic studies, however, showed that the Moho density contrast varies significantly. The assumption of a uniform density contrast thus might yield large errors in the estimated Moho depths. In this study we investigate these errors by comparing the Moho depths determined globally for the uniform and variable models of the Moho density contrast. These two gravimetric results are obtained based on solving the Vening Meinesz-Moritz’s inverse problem of isostasy. The uniform model of the Moho density contrast is defined individually for the continental and oceanic lithosphere to better reproduce the reality. The global data of the lower crust and upper mantle retrieved from the CRUST1.0 seismic crustal model are used to define the variable Moho density contrast. This seismic model is also used to validate both gravimetric solutions. Results of our numerical experiment reveals that the consideration of the variable Moho density contrast improves the agreement between the gravimetric and seismic Moho models; the RMS of differences is 5.4 km (for the uniform density contrast) and 4.7 km (for the variable density contrast).


Crust Gravity Isostasy Mantle Moho 


  1. Airy GB (1855) On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys. Trans R Soc Lond B 145Google Scholar
  2. Bagherbandi M, Tenzer R, Sjöberg LE, Novák P (2013) Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction. J Geodyn 66:25–37CrossRefGoogle Scholar
  3. Braitenberg C, Zadro M (1999) Iterative 3D gravity inversion with integration of seismologic data. Boll Geofis Teor Appl 40(3/4):469–476Google Scholar
  4. Braitenberg C, Wienecke S, Wang Y (2006) Basement structures from satellite-derived gravity field: South China Sea ridge. J Geophys Res 111:B05407CrossRefGoogle Scholar
  5. Braitenberg C, Mariani P, Reguzzoni M, Ussami N (2010) GOCE observations for detecting unknown tectonic features. In: Proceedings of the ESA living planet symposium, 28 June to 2, July 2010, Bergen, Norway, ESA SP-686Google Scholar
  6. Čadek O, Martinec Z (1991) Spherical hermonic expansion of the earth’s crustal thickness up to degree and order 30. Stud Geophys Geod 35:151–165CrossRefGoogle Scholar
  7. Chujkova NA, Maksimova TG (2010) Density inhomogeneities of the Earth’s mantle end core. Mosc Univ Phys Bull 65:137–144CrossRefGoogle Scholar
  8. Chujkova NA, Nasonova LP, Maximova TG (2007) Gravity anomalies in the Earth’s crust and upper mantle. Astron Astrophys Trans 26(4–5):391–399CrossRefGoogle Scholar
  9. Chujkova NA, Nasonova LP, Maximova TG (2014) Density, stress, and gravity anomalies in the interiors of the Earth and Mars and the probable geodynamical implications: comparative analysis. Izv Phys Solid Earth 50(3):427–443CrossRefGoogle Scholar
  10. Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356CrossRefGoogle Scholar
  11. Heiskanen WA, Moritz H (1967) Physical geodesy. WH Freeman and Co, San FranciscoGoogle Scholar
  12. Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560CrossRefGoogle Scholar
  13. Ishii M, Tromp J (2004) Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys Earth Planet Inter 146:113–124CrossRefGoogle Scholar
  14. Jordi J (2007) Constraining velocity and density contrasts across the crust–mantle boundary with receiver function amplitudes. Geophys J Int 171:286–301CrossRefGoogle Scholar
  15. Laske G, Masters G, Ma Z, Pasyanos ME (2012) CRUST1.0: an updated global model of Earth’s crust. In: Geophys Res Abs 14, EGU2012-3743-1, EGU General Assembly 2012Google Scholar
  16. Mayer-Guerr T, Rieser D, Höck E, Brockmann JM, Schuh W-D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. Abstract, GGHS2012, VeniceGoogle Scholar
  17. Moritz H (1990) The figure of the earth. Wichmann H, KarlsruheGoogle Scholar
  18. Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–162CrossRefGoogle Scholar
  19. Niu F, James DE (2002) Fine structure of the lowermost crust beneath the Kaapvaal craton and its implications for crustal formation and evolution. Earth Planet Sci Lett 200:121–130CrossRefGoogle Scholar
  20. Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. In: Presented at the 1st international symposium of the International gravity service 2006, August 28 – September 1, Istanbul, TurkeyGoogle Scholar
  21. Reguzzoni M, Sampietro D (2014) GEMMA: an Earth crustal model based on GOCE satellite data. Int J Appl Earth Obs 35(A):31–43Google Scholar
  22. Reguzzoni M, Sampietro D, Sansò F (2013) Global Moho from the combination of the CRUST2.0 model and GOCE data. Geophys J Int 195(1):222–237CrossRefGoogle Scholar
  23. Sampietro D (2011) GOCE exploitation for Moho modeling and applications. In: Proceedings of the 4th international GOCE user workshop, 31 March – 1 April 2011, Munich, GermanyGoogle Scholar
  24. Sampietro D, Reguzzoni M, Braitenberg C (2013) The GOCE estimated Moho beneath the Tibetan Plateau and Himalaya. In: International association of geodesy symposia. Earth on the edge: science for a sustainable planet, Proceedings of the IAG General Assembly, 28 June – 2 July 2011, Melbourne, Australia, vol 139. Springer, BerlinGoogle Scholar
  25. Sjöberg LE (2009) Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys J Int 179:1527–1536CrossRefGoogle Scholar
  26. Sjöberg LE (2011) On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz gravimetric inverse problem. Geophys J Int 193(3):1277–1282CrossRefGoogle Scholar
  27. Sjöberg LE, Bagherbandi M (2011) A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0. Acta Geophys 59(3):502–525CrossRefGoogle Scholar
  28. Tenzer R, Bagherbandi M (2012) Reformulation of the Vening-Meinesz Moritz inverse problem of isostasy for isostatic gravity disturbances. Int J Geosci 3(5A):918–929CrossRefGoogle Scholar
  29. Tenzer R, Chen W (2014) Expressions for the global gravimetric Moho modeling in spectral domain. Pure Appl Geophys 171(8):1877–1896CrossRefGoogle Scholar
  30. Tenzer R, Hamayun K, Vajda P (2009) Global maps of the CRUST2.0 crustal components stripped gravity disturbances. J Geophys Res 114:B05408CrossRefGoogle Scholar
  31. Tenzer R, Hamayun K, Novák P, Gladkikh V, Vajda P (2012a) Global crust-mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G. Pure Appl Geophys 169(9):1663–1678CrossRefGoogle Scholar
  32. Tenzer R, Bagherbandi M, Gladkikh V (2012b) Signature of the upper mantle density structure in the refined gravity data. Comput Geosci 16(4):975–986CrossRefGoogle Scholar
  33. Tenzer R, Chen W, Tsoulis D, Bagherbandi M, Sjöberg LE, Novák P, Jin S (2014a) Analysis of the refined CRUST1.0 crustal model and its gravity field. Surv Geophys. doi: 10.1007/s10712-014-9299-6 Google Scholar
  34. Tenzer R, Chen W, Jin S (2014b) Effect of the upper mantle density structure on the Moho geometry. Pure Appl Geophys. doi: 10.1007/s00024-014-0960-2 Google Scholar
  35. Vening Meinesz FA (1931) Une nouvelle methode pour la reduction isostatique regionale de l’intensite de la pesanteur. Bull Géod 29:33–51CrossRefGoogle Scholar
  36. Wienecke S, Braitenberg C, Götze H-J (2007) A new analytical solution estimating the flexural rigidity in the Central Andes. Geophys J Int 169(3):789–794CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.The Key Laboratory of Geospace Environment and GeodesySchool of Geodesy and Geomatics, Wuhan UniversityWuhanChina
  2. 2.Department of Industrial DevelopmentIT and Land Management University of GävleGävleSweden

Personalised recommendations