Advertisement

IGFS 2014 pp 83-91 | Cite as

Towards a Vertical Reference Frame for South America in View of the GGOS Specifications

  • Andrea Galudht Santacruz JaramilloEmail author
  • Sílvio Rogério Correia de Freitas
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 144)

Abstract

One of the objectives of the Geocentric Reference System for the Americas (SIRGAS) is to establish a unified Earth’s gravity field-related vertical reference system that meets the Global Geodetic Observing System (GGOS)’s requirements. This statement implies the homogenization and unification of the National Vertical Reference Systems (NVRS) existing in the SIRGAS and their integration into a International Height Reference System (IHRS). At present, different strategies based on the combination of local (e.g. levelling, terrestrial gravity data) and global observations (e.g. global models, GNSS positioning) are under consideration. However, most of them are not immediately applicable in South America due to the differences in the definition and realization of the local height systems. In this work, it is proposed an inventory of the available data and the implementation of a common metadata base in order to provide sufficient information for a consistent characterization of each NVRS. This structure must allow the identification of the different standards and specifications applied for the establishment of those systems and the needs of complementary actions for connecting them, including the standardization of the existing height data. The main goal of this approach is however the minimization of those inconsistencies produced by data unavailability, unknown discrepancies, different data collecting and processing strategies, accuracy, and other non-evaluated errors. Based on results for a case study (or test country) in South America, it is proposed a road map for the inventory of vertical systems established with metadata.

Keywords

Metadata in height systems SIRGAS Vertical Reference System (SVRS) Vertical datum unification 

Notes

Acknowledgements

The authors would like to thank the 3rd International Gravity Field Service (IGFS) General Assembly in Shanghai, China for the invitation and opportunity. Also many thanks to CNPq trough Grant N. 301797/2008-0, SENESCYT and SIRGAS. In special, thank you very much to Laura Sánchez by the suggestions.

References

  1. Amos MJ, Featherstone WE (2009) Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations. J Geod 83(1):57–68. doi: 10.1007/s00190-008-0232-y CrossRefGoogle Scholar
  2. Brovar VV (1972) A possible improvement in the accuracy of gravimetric results in geodesy. Sov Astron 15:1055–1058Google Scholar
  3. Brunini C, Sánchez L, Drewes H, Costa SMA, Mackern V, Martinez W, Seemüller W, Da Silva AL (2012) Improved analysis strategy and accessibility of the SIRGAS reference frame. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet earth, vol 136, IAG Symposia. Springer, Berlin, pp 3–10. doi: 10.1007/978-3-642-20338-1_1 CrossRefGoogle Scholar
  4. De Freitas SRC, Blitzkow D (1999) Altitudes e Geopotencial (In Portuguese). IGeS Bulletin N.9 – International Geoid Service, Junho, Milão, pp 47–62Google Scholar
  5. Drewes H, Sánchez L, Blitzkow D, de Freitas S (2002) Scientific foundations of the SIRGAS vertical reference system. In: Drewes H et al (eds) IAG Symposia, vol 124. Springer, Berlin, pp 297–301Google Scholar
  6. Ferreira VG, de Freitas SRC (2011) Geopotential numbers from GPS satellite surveying and disturbing potential model: a case study of Parana, Brazil. J Appl Geod 5:155–162. doi: 10.1515/JAG.2011.016 Google Scholar
  7. Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling, Ohio State University, Report No. 355Google Scholar
  8. Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation by collocation. J Geophys Res 86:7843–7854CrossRefGoogle Scholar
  9. Heck B (1989) A contribution to the scalar free boundary value problem of physical geodesy. Manuscr Geod 14:87–99Google Scholar
  10. Heck B (2011) A Brovar-type solution of the fixed geodetic boundary-value problem. Stud Geophys Geod 55:441–454CrossRefGoogle Scholar
  11. Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. IAG Symp Ser 104:116–128. doi: 10.1007/978-1-4684-7098-7_14 Google Scholar
  12. Heck B, Seitz K (1993) Effects of non-linearity in the geodetic boundary problems, DGK, Reihe A, Heft Nr. 109, München, 74pGoogle Scholar
  13. Hirt C, Featherstone WE, Marti U (2010) Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J Geod 84(9):557–567CrossRefGoogle Scholar
  14. Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer, WienGoogle Scholar
  15. Hugentobler U, Gruber T, Steigenberger P, Angermann D, Bouman J, Gerstl M, Richter B (2012) GGOS bureau for standards and conventions: integrated standards and conventions for geodesy. In: Kenyon SC, Pacino MC, Marti UJ (eds) Geodesy for planet earth, vol 136, IAG symposia. Springer, Berlin, pp 995–998. doi: 10.1007/978-3-642-20338-1_124 CrossRefGoogle Scholar
  16. Ihde J (2007) Inter-commission project 1.2: vertical reference frames. Final report for the period 2003–2007. In: IAG commission 1 – reference frames, Report 2003–2007. DGFI, Munich. Bulletin No. 20, pp 57–59Google Scholar
  17. Ihde J, Sanchez L (2005) A unified global height reference system as a basis for IGGOS. J Geodyn 40(4–5):400–413. doi: 10.1016/j.jog.2005.06.015 CrossRefGoogle Scholar
  18. Ihde J, Amos M, Heck B, Kersley B, Schöne T, Sánchez L, Drewes H (2007) Conventions for the definitions and realization of a conventional vertical reference system (CVRS). http://www.iho.int/mtg_docs/com_wg/IHOTC/IHOTC8/IHOTC8-3-6-1.pdf. Accessed June 2014
  19. Kutterer H, Neilan R, Bianco G (2012) Global geodetic observing system (GGOS). In: Drewes H, Hornik H, Ádám J, Rózsa S (eds) The geodesist’s handbook 2012. Springer, Berlin; J Geod 86(10): 915–926. doi:10.1007/s00190-012-0584-1Google Scholar
  20. Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133. doi: 10.1007/s001900050278 CrossRefGoogle Scholar
  21. Plag H-P, Altamimi Z, Bettadpur S, Beutler G, Beyerle G, Cazenave A, Crossley D, Donnellan A, Forsberg R, Gross R, Hinderer J, Komjathy A, Mannucci C, Ma AJ, Noll C, Nothnagel A, Pavlis EC, Pearlman M, Poli P, Schreiber U, Senior K, Woodworth PL, Zerbini S, Zuffada C (2009) The goals, achievements, and tools of modern geodesy. In: Plag H-P, Pearlman M (eds) Global geodetic observing system. Meeting the requirements of a global society on a changing planet in 2020. Springer, Berlin, p 18Google Scholar
  22. Rummel R, Teunissen P (1998) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62:477–498. doi: 10.1007/BF02520239 CrossRefGoogle Scholar
  23. Sacerdote F, Sansò F (1986) The scalar boundary value problem of physical geodesy. Manuscr Geod 11:15–28Google Scholar
  24. Sánchez L (2007) Definition and realization of the SIRGAS vertical reference system within a globally unified height system. In: Tregoning P, Rizos C (eds) Dynamic planet, vol 130, IAG Symposia. Springer, Berlin, pp 638–645CrossRefGoogle Scholar
  25. Sánchez L (2009) Strategy to establish a global vertical reference system. In: Drewes H (ed) Geodetic reference frames, vol 134, IAG Symposia. Springer, Berlin, pp 273–278. doi: 10.1007/978-3-642-00860-3_42 CrossRefGoogle Scholar
  26. Sánchez L (2012) Towards a vertical datum standardisation under the umbrella of global geodetic observing system. J Geod Sci. doi: 10.2478/v10156-012-0002-x Google Scholar
  27. Sánchez L, Brunini C (2009) Achievements and challenges of SIRGAS. In: Drewes H (ed) Geodetic reference frames, vol 134, IAG Symposia. Springer, Berlin, pp 161–166. doi: 10.1007/978-3-642-00860-3_25 CrossRefGoogle Scholar
  28. Sansò F (1995) The long road from measurements to boundary value problems in physical geodesy. Manuscr Geod 20(5):326–344Google Scholar
  29. Xu P, Rummel R (1991) A quality investigation of global vertical datum connection. Netherlands Geodetic Commission. Publ Geod 34Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andrea Galudht Santacruz Jaramillo
    • 1
    Email author
  • Sílvio Rogério Correia de Freitas
    • 1
  1. 1.Federal University of Paraná – UFPR, Geodetic Sciences Graduation Course – CPGCGCuritibaBrazil

Personalised recommendations