Skip to main content

Earthquake Cycles on the San Andreas Fault System in Northern California

  • Conference paper
  • First Online:
International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH)

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 145))

  • 558 Accesses

Abstract

The 24 August, 2014, M = 6.0 South Napa earthquake was the first earthquake to significantly affect the populous San Francisco Bay region since the 1989 Loma Prieta earthquake. The Napa earthquake has resulted in a new interest in earthquake risk on the San Andreas Fault (SAF) system north of San Francisco. The deformation in this region is dominantly right lateral shear between the rigid Pacific Plate and the rigid Sierra-Nevada-Central-Valley Plate. GPS observations are well approximated by a uniform shear strain across this 100 km wide zone. This zone is recognized to be a “slab window” with a relatively thin lithosphere. In this paper, we hypothesize that this lithosphere is composed of a 12 km thick brittle elastic upper lithosphere and a 15 km thick viscoplastic lower lithosphere. We attribute the observed near uniform surface strain to flow in the viscoplastic zone. Deformation in the brittle upper lithosphere results in seismicity. A substantial fraction, about 20 mm year−1, of the 32 mm year−1 of the right lateral deformation takes place on the SAF. However, the SAF is not parallel to the motion of the bounding rigid plates. This geometrical incompatibility requires distributed deformation across the 100 km wide zone. A fraction of this distributed deformation takes place on three relatively well defined strike-slip fault zones to the east of the SAF as well as on other faults. We suggest that when a large earthquake occurs, the localized stress concentrations are relaxed by flow in the viscoplastic zone. We give a detailed description of this process during and following the 1906 earthquake and show the process is consistent with observations. We also relate our tectonic model to the present distribution of seismicity in our study area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Advanced National Seismic System (ANSS) (2012). http://www.ncedc.org/anss/catalog-search.html. Accessed 25 Aug 2012

  • Chéry J (2008) Geodetic strain across the San Andreas fault reflects elastic plate thickness variations (rather than fault slip rate). Earth Planet Sci Lett 269(3–4):351–364. doi:10.1016/j.epsl.2008.01.046

    Google Scholar 

  • Clahan KB (2011) Paleoearthquake chronology along the Northern West Napa fault zone, Napa County, CA: U.S. Geological Survey Final Technical Report, Award Number 07HQGR0081, 6p

    Google Scholar 

  • D’Alessio MA, Johanson IA, Bürgmann R, Schmidt DA, Murray MH (2005) Slicing up the San Francisco Bay area: block kinematics and fault slip rates from GPS-derived surface velocities. J Geophys Res 110(B6):B06403. doi:10.1029/2004JB003496

    Google Scholar 

  • Dawson TE, Weldon RJ (2013) Uniform California earthquake rupture forecast, Version 3 (UCERF3) - The time-independent model, Appendix B, Geological slip rate data and geologic deformation model. USGS Open-File Report 2013-1165

    Google Scholar 

  • Dickinson WR (1997) Tectonic implications of Cenozoic volcanism in coastal California. Geol Soc Am Bull 109(8):936–954. doi:10.1130/0016-7606(1997)109<0936:OTIOCV>2.3.CO;2

    Google Scholar 

  • Freymueller JT, Murray MH, Segall P, Castillo D (1999) Kinematics of the Pacific North America plate boundary zone, northern California. J Geophys Res 104(B4):7419–7441. doi:10.1029/1998JB900118

    Article  Google Scholar 

  • Furlong KP, Schwartz SY (2004) Influence of the Mendocino triple junction on the tectonics of coastal California. Annu Rev Earth Planet Sci 32:403–433. doi: 10.1146/annurev.earth.32.101802.120252

    Article  Google Scholar 

  • Johnson KM, Segall P (2004) Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system. J Geophys Res 109(B10):B10403. doi: 10.1029/2004JB003096

    Article  Google Scholar 

  • Jolivet R, Bürgmann R, Houlié N (2009) Geodetic exploration of the elastic properties across and within the northern San Andreas fault zone. Earth Planet Sci Lett 288(1–2):126–131. doi:10.1016/j.epsl.2009.09.014

    Article  Google Scholar 

  • Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65(5):1073–1095

    Google Scholar 

  • Kenner SJ, Segall P (2000) Postseismic deformation following the 1906 San Francisco earthquake. J Geophys Res 105(B6):13195–13209. doi:10.1029/2000JB900076

    Article  Google Scholar 

  • Kenner SJ, Segall P (2003) Lower crustal structure in northern California: implications from strain rate variations following the 1906 San Francisco earthquake. J Geophys Res 108(B1):2011. doi:10.1029/2001JB000189

    Article  Google Scholar 

  • Lachenbruch AH, Sass JH (1980) Heat-flow and energetics of the San Andreas fault zone. J Geophys Res 85(NB11):6185–6222. doi:10.1029/JB085iB11p06185

    Google Scholar 

  • Matthews MV, Segall P (1993) Estimation of depth-dependent fault slip from measured surface deformation with application to the 1906 San-Francisco earthquake. J Geophys Res 98(B7):12153–12163. doi:10.1029/93JB00440

    Article  Google Scholar 

  • Pollitz FF, Nyst M (2005) A physical model for strain accumulation in the San Francisco Bay region. Geophys J Int 160(1):302–317. doi:10.1111/j.1365-246X.2005.02433.x

    Google Scholar 

  • Pollitz FF, Schwartz DP (2008) Probabilistic seismic hazard in the San Francisco Bay area based on a simplified viscoelastic cycle model of fault interactions. J Geophys Res 113(B5):B05409. doi:10.1029/2007JB005227

    Article  Google Scholar 

  • Pollitz FF, Bakun WH, Nyst M (2004) A physical model for strain accumulation in the San Francisco Bay region: stress evolution since 1838. J Geophys Res 109(B11):B11408. doi:10.1029/2004JB003003

    Article  Google Scholar 

  • Pollitz FF, McCrory P, Svarc J, Murray J (2008) Dislocation models of interseismic deformation in the western United States. J Geophys Res 113(B4):B04413. doi:10.1029/2007JB005174

    Article  Google Scholar 

  • Prescott WH, Savage JC, Svarc JL, Manaker D (2001) Deformation across the Pacific-North America plate boundary near San Francisco, California. J Geophys Res 106(B4):6673–6682. doi:10.1029/2000JB900397

    Article  Google Scholar 

  • Savage JC, Gan W, Prescott WH, Svarc JL (2004) Strain accumulation across the Coast Ranges at the latitude of San Francisco. 1994–2000. J Geophys Res 109(B3):B03413. doi:10.1029/2003JB002612

    Google Scholar 

  • Smith B, Sandwell D (2003) Coulomb stress accumulation along the San Andreas Fault system. J. Geophys Res 108(B6):2296. doi:10.1029/2002JB002136

    Google Scholar 

  • Thatcher W (1974) Strain release mechanism of 1906 San-Francisco earthquake. Science 184(4143):1283–1285. doi:10.1126/science.184.4143.1283

    Article  Google Scholar 

  • Thatcher W (1975) Strain accumulation and release mechanism of 1906 San-Francisco earthquake. J Geophys Res 80(35):4862–4872. doi:10.1029/JB080i035p04862.

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2014) Faulting. In: Geodynamics. Cambridge University Press, New York, pp 361–364

    Google Scholar 

  • UNAVCO, Plate Boundary Observatory (PBO) (2012). http://pbo.unavco.org/network. Accessed 25 Aug 2012

  • Yu TT, Rundle JB, Fernandez J (1996) Surface deformation due to a strike-slip fault in an elastic gravitational layer overlying a viscoelastic gravitational half-space. J Geophys Res 101(B2):3199–3214. doi:10.1029/95JB03118

    Article  Google Scholar 

Download references

Acknowledgements

The GPS and the seismic data were obtained from UNAVCO and Advanced National Seismic System respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Burak Yıkılmaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yıkılmaz, M.B., Turcotte, D.L., Beketova, O., Kellogg, L.H., Rundle, J.B. (2015). Earthquake Cycles on the San Andreas Fault System in Northern California. In: Hashimoto, M. (eds) International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH). International Association of Geodesy Symposia, vol 145. Springer, Cham. https://doi.org/10.1007/1345_2015_203

Download citation

Publish with us

Policies and ethics