Skip to main content

Forecasting Earthquakes with the Virtual Quake Simulator: Regional and Fault-Partitioned Catalogs

  • Conference paper
  • First Online:
International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH)

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 145))

  • 506 Accesses

Abstract

We introduce a framework for forecasting earthquakes using Virtual Quake (VQ), the generalized successor to the perhaps better known Virtual California earthquake simulator. We briefly introduce the VQ simulator, including its availability to research organizations and statistics relevant to earthquake forecasting applications. We discuss contemporary, regional type, forecasts and also show that forecasts can be significantly improved by partitioning catalogs along fault sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baral M (2012) Data transfer file formats for earthquake simulators. Seismol Res Lett 83(6):991–993

    Article  Google Scholar 

  • CIG (2015a) Computational infrastructure for geodynamics: virtual quake. http://geodynamics.org/cig/software/vq, (last viewed, Jan 2015)

  • CIG (2015b) Virtual quake: Github. https://github.com/geodynamics/vq

  • Glasscoe M, Wang J, Pierce M, Yoder M, Parker J, Burl M, Stough T, Granat R, Donnellan A, Rundle J, Ma Y, Bawden G (2014) E-decider: using earth science data and modeling tools to develop decision support for earthquake disaster response. Pure Appl Geophys (Published online), Topical Volume on Multihazard Simulation and Cyberinfrastructure

    Google Scholar 

  • Heien EM, Sachs MK (2012) Understanding long term earthquake behavior through simulation. Comput Sci Eng 14(5):10–15

    Article  Google Scholar 

  • Heien EM, Sachs MK, Schultz KW, Turcotte DL, Rundle JB (2014) Cig virtual quake manual v1.1. http://geodynamics.org/cig/software/github/vq/v1.1.0/vq_manual_1.1.0.pdf

  • NCEDC (2014) Advanced national seismic system (anss) catalog search (ncedc). doi:10.7932/NCEDC. http://www.ncedc.org/anss/catalog-search.html

  • Pythonorg (2014) Extending Python with C or C++. https://docs.python.org/2/extending/extending.html, (viewed in 2014)

  • Rundle JB (1988) A physical model for earthquakes. 2. Application to southern California. J Geophys Res Solid Earth 93(B6): 6255–6274

    Article  Google Scholar 

  • Rundle J, Rundle P, Donnelan A, Turcotte D, Shcherbakov R, Li P, Malamud B, Grant LB, Fox G, Mcleod D, Yakovlev G, Parker J, Klein W, Tiampo K (2005) A simulation-based approach to forecasting the next great san francisco earthquake. Proc Natl Acad Sci 102(43):15,363–15,367. doi:10.1073pnas.0507528102

  • Rundle JB, Holliday JR, Yoder MR, Sachs MK, Donnellan A, Turcotte DL, Tiampo KF, Klein W, Kellogg LH (2011) Earthquake precursors: activation or quiescence. Geophys J Int 187(1):225–236

    Article  Google Scholar 

  • Sachs MK, Heien EM, Turcotte DL, Yikilmaz M, Rundle JB, Kellogg LH (2012) Virtual California earthquake simulator. Seismol Rev Lett 83(6):959–963

    Article  Google Scholar 

  • SCEC (2011) http://scec.usc.edu/research/eqsims/documentation.html

  • Schultz KW, Sachs MK, Heien EM, Yoder MR, Rundle JB, Turcotte DL, Donnellan A (2015) Virtual quake: statistics, co-seismic deformations and gravity changes for driven earthquake fault systems. In: Proceedings of the International Association of Geodesy Symposia (available online)

    Google Scholar 

  • Shcherbakov R, Yakovlev G, Turcotte DL, Rundle JB (2005) Model for the distribution of aftershock interoccurrence times. Phys Rev Let 95:218501. doi:10.1103/PhysRevLett.95.218501

    Article  Google Scholar 

  • Swigorg (2014) Swig software development tool. http://www.swig.org/Doc1.3/Python.html. http://www.swig.org/Doc1.3/Python.html (viewed 2014)

  • Tullis TE, Richards-Dinger K, Barall M, Dieterich JH, Field EH, Heien EM, Kellogg LH, Pollitz FF, Rundle JB, Sachs MK, Turcotte DL, Ward SN, Yikilmaz MB (2012a) A Comparison among observations and earthquake simulator results for the allcal2 California fault model. Seismol Res Lett 83(6):994–1006. doi:10.1785/0220120094

    Article  Google Scholar 

  • Tullis TE, Richards-Dinger K, Barall M, Dieterich JH, Field EH, Heien EM, Kellogg LH, Pollitz FF, Rundle JB, Sachs MK, Turcotte DL, Ward SN, Yikilmaz MB (2012b) Generic earthquake simulator. Seismol Res Lett 83(6):959–963. doi:10.1785/0220120093

    Article  Google Scholar 

  • Yoder MR (2011) Record-breaking earthquake precursors. Ph.D. thesis, University of California Davis

    Google Scholar 

  • Yoder MR (2013) ETAS and Record-breaking Hazard Maps. http://gw11.quarry.iu.teragrid.org/myoder/ecatwww/edhazmapthin.html

  • Yoder MR (2014) Earthquakes: risk factors, seismic effects, and economic consequences. Nova Science Publishers, Inc., New York. Chapter 9, 1/F and the Earthquake Problem: Earthquake Forecasting and a Framework for Predictability – Past, Present and Future, pp 195–227

    Google Scholar 

  • Yoder MR, Rundle J (2015) Record-breaking intervals: detecting trends in the incidence of self-similar earthquake sequences. Pure Appl Geophys 172(8):2215–2235. doi:10.1007/s00024-014-0887-7

    Article  Google Scholar 

  • Yoder MR, Turcotte DL, Rundle JB (2012) Extreme events and natural hazards: the complexity perspective. Geophysical Monograph Series, vol 196, AGU, Washington, DC. chap Earthquakes: complexity and extreme events, pp 17–26. doi:10.1029/2011GM001071

  • Yoder MR, Rundle JB, Glasscoe MT (2015a) Near-field ETAS constraints and applications to seismic hazard assessment. Pure Appl Geophys 172(8):2277–2293. doi:10.1007/s00024-014-0785-z

    Article  Google Scholar 

  • Yoder MR, Schultz KW, Heien EM, Rundle JB, Turcotte DL, Parker JW, Donnellan A (2015b) The virtual quake earthquake simulator: a simulation based forecast of the el mayor-cucapah region and evidence of predictability in simulated earthquake sequences (in production). doi:10.1093/gji/ggv320

Download references

Acknowledgements

This research is supported by the NASA Earth and Space Science fellowship number NNX11AL92H, NASA grant NNX08AF69G, and JPL Subcontract 1291967.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Yoder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yoder, M.R. et al. (2015). Forecasting Earthquakes with the Virtual Quake Simulator: Regional and Fault-Partitioned Catalogs. In: Hashimoto, M. (eds) International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH). International Association of Geodesy Symposia, vol 145. Springer, Cham. https://doi.org/10.1007/1345_2015_198

Download citation

Publish with us

Policies and ethics