IGFS 2014 pp 179-188 | Cite as

Application of Independent Component Analysis in GRACE-Derived Water Storage Changes Interpretation: A Case Study of the Tibetan Plateau and Its Surrounding Areas

  • Hanjiang Wen
  • Zhenwei Huang
  • Youlei Wang
  • Huanling Liu
  • Guangbin Zhu
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 144)


Independent component analysis (ICA) is applied to decompose the water storage changes derived from 132 months (2003.01 to 2013.12) Gravity Recovery and Climate Experiment (GRACE) measurements over Tibetan Plateau. The results are then compared with those from NOAH and WaterGAP Global Hydrology Model (WGHM) hydrological models. Our assessments indicate that the decomposed components from the water storage changes and hydrological models agree well, indicating the ICA’s relatively robust performance in separating independent pattern from water storage observations with few a priori information.


GRACE Hydrological Models Independent Component Analysis Water Storage Changes 



The authors are grateful to Ehsan Forootan and two anonymous reviewers for their constructive comments which led to the improvement of the manuscript. The research is funded by National Key Basic Research Program (2013CB733302), National Natural Science Foundation of China(41274031, 41404014), Chinese Academy of Surveying and Mapping Fundamental Scientific Research Expenses (7771415).


  1. Bartlett MS (2001) Face image analysis by unsupervised learning. Kluwer, Boston. doi: 10.1007/978-1-4615-1637-8 CrossRefGoogle Scholar
  2. Boergens E, Rangelova E, Sideris MG, Kusche J (2014) Assessment of the capabilities of the temporal and spatiotemporal ICA method for geophysical signal separation in GRACE data. J Geophys Res Solid Earth 119(5):4429–4447CrossRefGoogle Scholar
  3. Cardoso JF (1992) Fourth-order cumulant structure forcing: application to blind array processing. In: Statistical signal and array processing, 1992 conference proceedings, IEEE Sixth SP Workshop on IEEE, pp 136–139. doi: 10.1109/SSAP.1992.246830
  4. Cardoso JF (1999) High-order contrasts for independent component analysis. Neural Comput 11(1):157–192. doi: 10.1162/089976699300016863 CrossRefGoogle Scholar
  5. Cardoso JF, Souloumiac A (1993) Blind beamforming for non-Gaussian signals. In: IEEE Proceedings F (Radar Signal Proc 140(6):362–370) IET Digital Library. doi: 10.1049/ip-f-2.1993.0054
  6. Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32(14). doi: 10.1029/2005GL022964
  7. Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006) Antarctic mass rates from GRACE. Geophys Res Lett 33(11). doi: 10.1029/2006GL026369
  8. Döll, P, Kaspar, F, Lehner, B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology, 270(1):105--134.Google Scholar
  9. Duan XJ, Guo JY, Shum CK, Van Der Wal W (2009) On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions. J Geod 83(11):1095–1106CrossRefGoogle Scholar
  10. Forootan E, Kusche J (2012) Separation of global time-variable gravity signals into maximally independent components. J Geod 86(7):477–497. doi: 10.1007/s00190-011-0532-5 CrossRefGoogle Scholar
  11. Forootan E, Kusche J (2013) Separation of deterministic signals, using independent component analysis (ICA). Stud Geophys Geod 57:17–26. doi: 10.1007/s11200-012-0718-1 CrossRefGoogle Scholar
  12. Forootan E, Rietbroek R, Kusche J, Sharifi MA, Awange JL, Schmidt M, Famiglietti J (2014) Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. Remote Sens Environ 140:580–595. doi: 10.1016/j.rse.2013.09.025 CrossRefGoogle Scholar
  13. Frappart F, Ramillien G, Maisongrande P, Bonnet MP (2010) Denoising satellite gravity signals by independent component analysis. Geosci Remote Sens Lett IEEE 7(3):421–425. doi: 10.1109/LGRS.2009.2037837 CrossRefGoogle Scholar
  14. Guo J, Mu D, Liu X, Yan H, Dai H (2014) Equivalent water height extracted from GRACE gravity field model with robust independent component analysis. Acta Geophys 62(4):953–972. doi: 10.2478/s11600-014-0210-0 CrossRefGoogle Scholar
  15. Hyvarinen A (1999) Survey on independent component analysis. Neur Comput Surv 2(4):94–128Google Scholar
  16. Hyvärinen A, Karhunen J, Oja E (2004) Independent component analysis, vol 46. Wiley, New YorkGoogle Scholar
  17. Jeffers JNR (1967) Two case studies in the application of principal component analysis. Appl Stat 225–236Google Scholar
  18. Jolliffe IT (2003) A cautionary note on artificial examples of EOFs. J Clim 16(7):1084–1086. doi: 10.1175/1520-0442(2003)0161084:ACNOAE2.0.CO;2 CrossRefGoogle Scholar
  19. Luo F, Dai W, Tang C, Huang D, Wu X (2012) EMD-ICA with reference signal method and its application in GPS multipath. Acta Geod Cartogr Sin 41(3):366–371Google Scholar
  20. Lv W, Chen Y, Zhang B (2007) Application of independent component analysis method in earthquake signal de-noise. Oil Geophys Prospect 42(2):132–136Google Scholar
  21. Makeig S, Bell AJ, Jung TP, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data. Adv Neur Inform Proc Syst 145–151Google Scholar
  22. Niu T, Chen LX, Wang W (2002) REOF analysis of climatic characteristics of winter temperature and humidity on Xizang-Qinghai Plateau. J Appl Meteorol Sci 135:560–570Google Scholar
  23. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909. doi: 10.1038/ng1847 CrossRefGoogle Scholar
  24. Rangelova E, van der Wal W, Braun A, Sideris MG, Wu P (2007) Analysis of gravity recovery and climate experiment time-variable mass redistribution signals over North America by means of principal component analysis. J Geophys Res 112(F3). doi: 10.1029/2006JF000615
  25. Rodell M, Houser PR, Jambor UEA, Gottschalck J, Mitchell K, Meng CJ, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394. doi: 10.1175/BAMS-85-3-381 CrossRefGoogle Scholar
  26. Schmidt R, Petrovic S, Güntner A, Barthelmes F, Wünsch J, Kusche J (2008) Periodic components of water storage changes from GRACE and global hydrology models. J Geophys Res Solid Earth 113(B8). doi: 10.1029/2007JB005363
  27. Schrama EJO, Wouters B, Lavalle DA (2007) Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass variations. J Geophys Res 112, B08407. doi: 10.1029/2006JB004882 CrossRefGoogle Scholar
  28. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9). doi: 10.1029/2004GL019920
  29. Wen H, Zhu G, Cheng P, Chang X, Liu H (2011) The ice sheet height changes and mass variations in Antarctica by using ICESat and GRACE data. Int J Image Data Fusion 2(3):255–265. doi: 10.1080/19479832.2010.491803 CrossRefGoogle Scholar
  30. Werth S, Güntner A (2010) Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrol Earth Syst Sci 14(1):59–78. doi: 10.5194/hessd-6-4813-2009 CrossRefGoogle Scholar
  31. Xu P, Zhang W (2013) Inversion of terrestrial water storage changes in recent years for Qinghai-Tiabetan plateau and Yarlung Zangbo River basin by GRACE. J Water Resour Water Eng 1:007Google Scholar
  32. Zhang G, Yao T, Xie H, Kang S, Lei Y (2013) Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys Res Lett 40(10):2125–2130CrossRefGoogle Scholar
  33. Zhu G, Li J, Wen H, Wang J (2008) Study on variations of global continental water storage with grace gravity field models. J Geod Geodyn 28(5):39–44Google Scholar
  34. Zotov L, Shum C (2010) Multichannel singular spectrum analysis of the gravity field data from GRACE satellites. In: Chakrabarti SK, Zhuk AI, Bisnovatyi-Kogan GS (eds) Astrophysics and cosmology after Gamow, vol 1206. Am Inst Phys, Odessa, Ukraine, pp 473–479. doi: 10.1063/1.3292557

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hanjiang Wen
    • 1
  • Zhenwei Huang
    • 1
  • Youlei Wang
    • 1
  • Huanling Liu
    • 1
    • 2
  • Guangbin Zhu
    • 3
  1. 1.Chinese Academy of Surveying and MappingBeijingChina
  2. 2.School of Geodesy and Geomatics, Wuhan UniversityWuhanChina
  3. 3.Satellite Surveying and Mapping Application Center, NASGBeijingChina

Personalised recommendations