Skip to main content

Application of Independent Component Analysis in GRACE-Derived Water Storage Changes Interpretation: A Case Study of the Tibetan Plateau and Its Surrounding Areas

  • Conference paper
IGFS 2014

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 144))

  • 598 Accesses

Abstract

Independent component analysis (ICA) is applied to decompose the water storage changes derived from 132 months (2003.01 to 2013.12) Gravity Recovery and Climate Experiment (GRACE) measurements over Tibetan Plateau. The results are then compared with those from NOAH and WaterGAP Global Hydrology Model (WGHM) hydrological models. Our assessments indicate that the decomposed components from the water storage changes and hydrological models agree well, indicating the ICA’s relatively robust performance in separating independent pattern from water storage observations with few a priori information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartlett MS (2001) Face image analysis by unsupervised learning. Kluwer, Boston. doi:10.1007/978-1-4615-1637-8

    Book  Google Scholar 

  • Boergens E, Rangelova E, Sideris MG, Kusche J (2014) Assessment of the capabilities of the temporal and spatiotemporal ICA method for geophysical signal separation in GRACE data. J Geophys Res Solid Earth 119(5):4429–4447

    Article  Google Scholar 

  • Cardoso JF (1992) Fourth-order cumulant structure forcing: application to blind array processing. In: Statistical signal and array processing, 1992 conference proceedings, IEEE Sixth SP Workshop on IEEE, pp 136–139. doi:10.1109/SSAP.1992.246830

  • Cardoso JF (1999) High-order contrasts for independent component analysis. Neural Comput 11(1):157–192. doi:10.1162/089976699300016863

    Article  Google Scholar 

  • Cardoso JF, Souloumiac A (1993) Blind beamforming for non-Gaussian signals. In: IEEE Proceedings F (Radar Signal Proc 140(6):362–370) IET Digital Library. doi:10.1049/ip-f-2.1993.0054

  • Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32(14). doi:10.1029/2005GL022964

  • Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006) Antarctic mass rates from GRACE. Geophys Res Lett 33(11). doi:10.1029/2006GL026369

  • Döll, P, Kaspar, F, Lehner, B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology, 270(1):105--134.

    Google Scholar 

  • Duan XJ, Guo JY, Shum CK, Van Der Wal W (2009) On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions. J Geod 83(11):1095–1106

    Article  Google Scholar 

  • Forootan E, Kusche J (2012) Separation of global time-variable gravity signals into maximally independent components. J Geod 86(7):477–497. doi:10.1007/s00190-011-0532-5

    Article  Google Scholar 

  • Forootan E, Kusche J (2013) Separation of deterministic signals, using independent component analysis (ICA). Stud Geophys Geod 57:17–26. doi:10.1007/s11200-012-0718-1

    Article  Google Scholar 

  • Forootan E, Rietbroek R, Kusche J, Sharifi MA, Awange JL, Schmidt M, Famiglietti J (2014) Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. Remote Sens Environ 140:580–595. doi:10.1016/j.rse.2013.09.025

    Article  Google Scholar 

  • Frappart F, Ramillien G, Maisongrande P, Bonnet MP (2010) Denoising satellite gravity signals by independent component analysis. Geosci Remote Sens Lett IEEE 7(3):421–425. doi:10.1109/LGRS.2009.2037837

    Article  Google Scholar 

  • Guo J, Mu D, Liu X, Yan H, Dai H (2014) Equivalent water height extracted from GRACE gravity field model with robust independent component analysis. Acta Geophys 62(4):953–972. doi:10.2478/s11600-014-0210-0

    Article  Google Scholar 

  • Hyvarinen A (1999) Survey on independent component analysis. Neur Comput Surv 2(4):94–128

    Google Scholar 

  • Hyvärinen A, Karhunen J, Oja E (2004) Independent component analysis, vol 46. Wiley, New York

    Google Scholar 

  • Jeffers JNR (1967) Two case studies in the application of principal component analysis. Appl Stat 225–236

    Google Scholar 

  • Jolliffe IT (2003) A cautionary note on artificial examples of EOFs. J Clim 16(7):1084–1086. doi:10.1175/1520-0442(2003)0161084:ACNOAE2.0.CO;2

    Article  Google Scholar 

  • Luo F, Dai W, Tang C, Huang D, Wu X (2012) EMD-ICA with reference signal method and its application in GPS multipath. Acta Geod Cartogr Sin 41(3):366–371

    Google Scholar 

  • Lv W, Chen Y, Zhang B (2007) Application of independent component analysis method in earthquake signal de-noise. Oil Geophys Prospect 42(2):132–136

    Google Scholar 

  • Makeig S, Bell AJ, Jung TP, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data. Adv Neur Inform Proc Syst 145–151

    Google Scholar 

  • Niu T, Chen LX, Wang W (2002) REOF analysis of climatic characteristics of winter temperature and humidity on Xizang-Qinghai Plateau. J Appl Meteorol Sci 135:560–570

    Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909. doi:10.1038/ng1847

    Article  Google Scholar 

  • Rangelova E, van der Wal W, Braun A, Sideris MG, Wu P (2007) Analysis of gravity recovery and climate experiment time-variable mass redistribution signals over North America by means of principal component analysis. J Geophys Res 112(F3). doi:10.1029/2006JF000615

  • Rodell M, Houser PR, Jambor UEA, Gottschalck J, Mitchell K, Meng CJ, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394. doi:10.1175/BAMS-85-3-381

    Article  Google Scholar 

  • Schmidt R, Petrovic S, Güntner A, Barthelmes F, Wünsch J, Kusche J (2008) Periodic components of water storage changes from GRACE and global hydrology models. J Geophys Res Solid Earth 113(B8). doi:10.1029/2007JB005363

  • Schrama EJO, Wouters B, Lavalle DA (2007) Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass variations. J Geophys Res 112, B08407. doi:10.1029/2006JB004882

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9). doi:10.1029/2004GL019920

  • Wen H, Zhu G, Cheng P, Chang X, Liu H (2011) The ice sheet height changes and mass variations in Antarctica by using ICESat and GRACE data. Int J Image Data Fusion 2(3):255–265. doi:10.1080/19479832.2010.491803

    Article  Google Scholar 

  • Werth S, Güntner A (2010) Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrol Earth Syst Sci 14(1):59–78. doi:10.5194/hessd-6-4813-2009

    Article  Google Scholar 

  • Xu P, Zhang W (2013) Inversion of terrestrial water storage changes in recent years for Qinghai-Tiabetan plateau and Yarlung Zangbo River basin by GRACE. J Water Resour Water Eng 1:007

    Google Scholar 

  • Zhang G, Yao T, Xie H, Kang S, Lei Y (2013) Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys Res Lett 40(10):2125–2130

    Article  Google Scholar 

  • Zhu G, Li J, Wen H, Wang J (2008) Study on variations of global continental water storage with grace gravity field models. J Geod Geodyn 28(5):39–44

    Google Scholar 

  • Zotov L, Shum C (2010) Multichannel singular spectrum analysis of the gravity field data from GRACE satellites. In: Chakrabarti SK, Zhuk AI, Bisnovatyi-Kogan GS (eds) Astrophysics and cosmology after Gamow, vol 1206. Am Inst Phys, Odessa, Ukraine, pp 473–479. doi:10.1063/1.3292557

Download references

Acknowledgements

The authors are grateful to Ehsan Forootan and two anonymous reviewers for their constructive comments which led to the improvement of the manuscript. The research is funded by National Key Basic Research Program (2013CB733302), National Natural Science Foundation of China(41274031, 41404014), Chinese Academy of Surveying and Mapping Fundamental Scientific Research Expenses (7771415).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wen, H., Huang, Z., Wang, Y., Liu, H., Zhu, G. (2015). Application of Independent Component Analysis in GRACE-Derived Water Storage Changes Interpretation: A Case Study of the Tibetan Plateau and Its Surrounding Areas. In: Jin, S., Barzaghi, R. (eds) IGFS 2014. International Association of Geodesy Symposia, vol 144. Springer, Cham. https://doi.org/10.1007/1345_2015_187

Download citation

Publish with us

Policies and ethics