Skip to main content

Towards Improved Lunar Reference Frames: LRO Orbit Determination

  • Conference paper
REFAG 2014

Abstract

Lunar reference systems are currently realized by sets of coordinates of the few laser reflectors deployed by Apollo astronauts and unmanned Soviet spacecrafts. Expanding this coordinate knowledge to other features identifiable in images of the lunar surface requires highly accurate orbits of the acquiring spacecraft. To support such activities using images and altimetry data from the Lunar Reconnaissance Orbiter (LRO), an independent processing facility for tracking observations to LRO has been established. We present orbits from 1 year radio Doppler, radio ranging and laser ranging data obtained by different combinations of data types. To obtain an external confirmation for the achieved orbit accuracy, coordinates of the Apollo 15 reflector were measured in LRO images by photogrammetric techniques and compared to reference values from Lunar Laser Ranging (LLR). Coordinate differences were found to be at the 10 m level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. doi:101029/2005JB003629

    Google Scholar 

  • Chin G, Brylow S, Foote M, Garvin J, Kasper J, Keller J, Litvak M, Mitrofanov M, Paige D, Raney K, Robinson M, Sanin A, Smith D, Spence H, Spudis P, Stern S, Zuber M (2007) Lunar Reconnaissance Orbiter overview: the instrument suite and mission. Space Sci Rev 129:391–419. doi:101007/s11214-007-9153-y

    Google Scholar 

  • Floberghagen R, Visser P, Weischede F (1999) Lunar albedo force modeling and its effect on low lunar orbit and gravity field determination. Adv Space Res 23(4):733–738. doi:101016/S0273-1177(99)00155-6

    Google Scholar 

  • GSFC (2010) Station raw tracking data. http://imbrium.mit.edu/ LRORS/DOCUMENT/LRO_ DESC_TRK.TXT

    Google Scholar 

  • Haase I, Oberst J, Scholten F, Wählisch M, Gläser P, Karachevtseva I, Robinson M (2012) Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter camera images and Apollo surface photography. J Geophys Res 117. doi:101029/2011JE003908

    Google Scholar 

  • Konopliv A, Park R, Yuan D, Asmar S, Watkins M, Williams J, Fahnestock E, Kruizinga G, Paik M, Strekalov D, Harvey N, Smith D, Zuber M (2013) The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL primary mission. J Geophys Res 118(7). doi:101002/jgre20097

    Google Scholar 

  • Maier A, Baur O, Krauss S (2014) POD of LRO and inferred gravity field information. Poster presented at European Planetary Science Congress, Cascais

    Google Scholar 

  • Mayer-Gürr T (2008) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation, Bonn

    Google Scholar 

  • Mazarico E, Rowlands D, Neumann G, Smith D, Torrence M, Lemoine F, Zuber M (2012) Orbit determination of the Lunar Reconnaissance Orbiter. J Geodesy 86(3):193–207

    Article  Google Scholar 

  • Mazarico E, Goossens S, Lemoine F, Neumann G, Torrence M, Rowlands D, Smith D, Zuber M (2013) Improved orbit determination of lunar orbiters with lunar gravity models obtained by the GRAIL mission. In: 44th Lunar and Planetary Science Conference, The Woodlands

    Google Scholar 

  • Mendes V, Pavlis E (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett 31:L14602. doi:101029/2004GL020308

    Google Scholar 

  • Müller J, Biskupek L, Hofmann F, Mai E (2014) Lunar Laser Ranging and relativity. In: Kopeikin S (ed) Frontiers of relativistic celestial mechanics, vol 2. De Gruyter, Berlin, pp 103–156

    Google Scholar 

  • Nicholson A, Slojkowski S, Long A (2010) NASA GFSC Lunar Reconnaissance Orbiter (LRO) orbit estimation and prediction. In: SpaceOps 2010, Huntsville

    Google Scholar 

  • Petit G, Luzum B (2010) IERS Conventions. IERS Technical Note 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie

    Google Scholar 

  • Slojkowski S (2014) Lunar Reconnaissance Orbiter orbit determination accuracy analysis. In: 24th International Symposium on Space Flight Dynamics, Laurel

    Google Scholar 

  • Smith D, Zuber M, Lemoine F, Torrence M, Mazarico E (2008) Orbit determination of LRO at the moon. In: 16th International Workshop on Laser Ranging, Poznan

    Google Scholar 

  • Tooley C (2009) Lunar Reconnaissance Orbiter mission update. In: Wernher von Braun Memorial Symposium 2009, Huntsville

    Google Scholar 

  • Vondrak R, Keller J, Chin G, Garvin J (2010) Lunar Reconnaissance Orbiter (LRO): observations for lunar exploration and science. Space Sci Rev 150:7–22. doi:101007/s11214-010-9631-5

    Google Scholar 

  • Williams J, Boggs D, Folkner W (2008) DE421 lunar orbit, physical librations, and surface coordinates. JPL Interoffice Memorandum 335-JW,DB,WF-20080314-001

    Google Scholar 

  • Zuber M, Smith D, Lehman D, Hoffman T, Asmar S, Watkins M (2013) Gravity Recovery and Interior Laboratory (GRAIL): mapping the lunar interior from crust to core. Space Sci Rev 178:3–24. doi:101007/s11214-012-9952-7

    Google Scholar 

Download references

Acknowledgements

This research was funded by the German Research Foundation (DFG) within the research unit FOR 1503 “Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space”. In addition, J. Oberst was hosted by MIIGAiK and supported by Russian Science Foundation, project #14-22-00197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anno Löcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Löcher, A. et al. (2015). Towards Improved Lunar Reference Frames: LRO Orbit Determination. In: van Dam, T. (eds) REFAG 2014. International Association of Geodesy Symposia, vol 146. Springer, Cham. https://doi.org/10.1007/1345_2015_146

Download citation

Publish with us

Policies and ethics