IGFS 2014 pp 139-145 | Cite as

New Geoid Model in the State of São Paulo

  • G. N. GuimarãesEmail author
  • A. C. O.C. de Matos
  • D. Blitzkow
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 144)


The purpose of this manuscript is to present some efforts in terms of gravity measurements in the State of São Paulo with the aim to improve the geoid model, and to show the establishment of an absolute gravity network in this state. The efforts resulted in a geoid model called GEOIDSP, limited by 19°S and 26°S in latitude and 44°W and 54°W in longitude, which has been derived using the modified Stokes’ integral through Fast Fourier Transform (FFT). Another objective of this study is to verify the potentiality of GOCE-based models. The spectral decomposition was employed in the geoid models computation and the long wavelength component was represented by GOCE-based models up to degree and order 200. The models were compared in terms of absolute comparisons from GPS/leveling and the results show consistency between them. EIGEN6C3STAT model and GO_CONS_GCF_2_DIR_R4 presented the same results (0.18 m), in terms of RMS, while GO_CONS_GCF_2_TIM_R4, 0.20 m. In the case of absolute gravity measures, 18 stations are being measured (15 news and 3 re-occupations).


Recent GGM São Paulo geoid modeling Spectral decomposition 



The first author acknowledges CAPES for the grant that allowed him to participate in the IGFS meeting. The state of São Paulo benefited from a sharp improvement in the distribution of gravity data through the thematic project sponsored by FAPESP (Process: 2006/04008-2).


  1. Andersen OB (2010) The DTU10 gravity field and mean sea surface. Second international symposium of the gravity field service – IGFS2 20–22 September 2010 Fairbanks, Alaska.
  2. Blitzkow D, Matos ACOC, Campos IO, Ellmann A, Vaníček P, Santos MC (2008) An attempt for an Amazongeoid model using Helmert gravity anomaly. In: Sideris MG (Org) Observing our changing earth, 1 edn, vol 133. Springer, Berlin, pp 187–194Google Scholar
  3. Blitzkow D, Matos ACOC, Guimarães GN, Lobianco MCB (2010) Recent progress of the geoid in South America. 42° Reunión del Consejo Directivo del Instituto Panamericano de Geografía e Historia (IPGH), Lima, Peru.
  4. Bruinsma SL, Foerste C, Abrikosov O, Marty JC, Rio MH, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40:3607–3612CrossRefGoogle Scholar
  5. Ellmann A, Vaníček P (2007) UNB applications of Stokes-Helmert’s approach to geoid computation. J Geodyn 43:200–213CrossRefGoogle Scholar
  6. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D. (2007) The shuttle radar topography mission. Rev Geophys 45(2). doi: 10.1029/2005RG000183/pdf CrossRefGoogle Scholar
  7. Featherstone WE (2003) Software for computing five existing types of deterministically modified integration kernel for gravimetric geoid determination. Comput Geosci 29:183–193, Scholar
  8. Förste C, Flechtner F, Schmidt R, Meyer U, Stubenvoll R, Barthelmes F, König R, Neumayer K, Rothacher M, Reigber C, Biancale R, Bruinsma S, Lemoine J, Raimondo J (2006) Mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface data – EIGEN-GL04C. Geophys Res Abst 8Google Scholar
  9. Förste C, Bruinsma S, Flechtner F, Marty J-C, Lemoine J-M, Dahle C, Abrykosov O, Neumayer K-H, Biancale R, Barthelmes F, Balmino G (2012) A preliminary update of the direct approach GOCE processing and a new release of EIGEN-6C, AGU 2012 Fall Meeting San Francisco, USA.
  10. Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means orbit residuals and geoid comparisons. J Geod 85:845–860CrossRefGoogle Scholar
  11. Lemoine FG, Pavlis NK, Kenyon SC, Rapp RH, Pavlis EC, Chao BF (1998a) New high-resolution model developed for earth’ gravitational field. EOS Trans AGU 79(9):117–118. doi: 10.1029/98EO00076/pdf CrossRefGoogle Scholar
  12. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998b) The development of the joint NASA GSFC and the national imagery and mapping agency (NIMA) geopotential model EGM96, NASA/TP-1998-206861. National Aeronautics and Space Administration, Maryland, USA.
  13. Martinec Z (1998) Boundary-value problems for gravimetric determination of a precise geoid. Lecture Notes Earth Sci 73Google Scholar
  14. Martinec Z, Vaníček P (1994) Direct topographical effect of Helmert’s condensation for a spherical approximation of the geoid. Manuscr Geod 19:257–268Google Scholar
  15. Matos ACOC, Blitzkow D (2008) Modelagem Digital de Terrenos (MDT) de 3″ para a América do Sul Pos-Doc Report – Escola Politécnica, Universidade de São Paulo, São Paulo.
  16. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sanso F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843CrossRefGoogle Scholar
  17. Toustou D (1991) Chaîne de validation interactive de données gravimétriques: DIVA. Note technique No. 10, Bureau Gravimétrique International (in French)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • G. N. Guimarães
    • 1
    Email author
  • A. C. O.C. de Matos
    • 2
  • D. Blitzkow
    • 2
  1. 1.Institute of Geography, University Federal of Uberlândia, IGUFUMonte CarmeloBrazil
  2. 2.Laboratory of Topography and Geodesy, Department of~TransportationUniversity of São Paulo, EPUSP-PTRButantãBrazil

Personalised recommendations